Metamath Proof Explorer


Theorem ranksng

Description: The rank of a singleton. Closed form of ranksn . (Contributed by Scott Fenton, 15-Jul-2015)

Ref Expression
Assertion ranksng AVrankA=sucrankA

Proof

Step Hyp Ref Expression
1 sneq x=Ax=A
2 1 fveq2d x=Arankx=rankA
3 fveq2 x=Arankx=rankA
4 suceq rankx=rankAsucrankx=sucrankA
5 3 4 syl x=Asucrankx=sucrankA
6 2 5 eqeq12d x=Arankx=sucrankxrankA=sucrankA
7 vex xV
8 7 ranksn rankx=sucrankx
9 6 8 vtoclg AVrankA=sucrankA