Metamath Proof Explorer


Theorem ranrcl4lem

Description: Lemma for ranrcl4 and ranrcl5 . (Contributed by Zhi Wang, 4-Nov-2025)

Ref Expression
Hypothesis ranrcl2.l No typesetting found for |- ( ph -> L ( F ( <. C , D >. Ran E ) X ) A ) with typecode |-
Assertion ranrcl4lem Could not format assertion : No typesetting found for |- ( ph -> ( <. D , E >. -o.F F ) = <. ( 1st ` ( <. D , E >. -o.F F ) ) , ( 2nd ` ( <. D , E >. -o.F F ) ) >. ) with typecode |-

Proof

Step Hyp Ref Expression
1 ranrcl2.l Could not format ( ph -> L ( F ( <. C , D >. Ran E ) X ) A ) : No typesetting found for |- ( ph -> L ( F ( <. C , D >. Ran E ) X ) A ) with typecode |-
2 1 ranrcl2 φ F C Func D
3 opex D E V
4 3 a1i φ D E V
5 2 4 prcofelvv Could not format ( ph -> ( <. D , E >. -o.F F ) e. ( _V X. _V ) ) : No typesetting found for |- ( ph -> ( <. D , E >. -o.F F ) e. ( _V X. _V ) ) with typecode |-
6 1st2nd2 Could not format ( ( <. D , E >. -o.F F ) e. ( _V X. _V ) -> ( <. D , E >. -o.F F ) = <. ( 1st ` ( <. D , E >. -o.F F ) ) , ( 2nd ` ( <. D , E >. -o.F F ) ) >. ) : No typesetting found for |- ( ( <. D , E >. -o.F F ) e. ( _V X. _V ) -> ( <. D , E >. -o.F F ) = <. ( 1st ` ( <. D , E >. -o.F F ) ) , ( 2nd ` ( <. D , E >. -o.F F ) ) >. ) with typecode |-
7 5 6 syl Could not format ( ph -> ( <. D , E >. -o.F F ) = <. ( 1st ` ( <. D , E >. -o.F F ) ) , ( 2nd ` ( <. D , E >. -o.F F ) ) >. ) : No typesetting found for |- ( ph -> ( <. D , E >. -o.F F ) = <. ( 1st ` ( <. D , E >. -o.F F ) ) , ( 2nd ` ( <. D , E >. -o.F F ) ) >. ) with typecode |-