Metamath Proof Explorer


Theorem ranval2

Description: The set of right Kan extensions is the set of universal pairs. Therefore, the explicit universal property can be recovered by oppcup2 and oppcup3lem . (Contributed by Zhi Wang, 4-Nov-2025)

Ref Expression
Hypotheses isran.o O = oppCat D FuncCat E
isran.p P = oppCat C FuncCat E
isran.k No typesetting found for |- ( ph -> ( <. D , E >. -o.F F ) = <. J , K >. ) with typecode |-
ranval2.f φ F C Func D
Assertion ranval2 Could not format assertion : No typesetting found for |- ( ph -> ( F ( <. C , D >. Ran E ) X ) = ( <. J , tpos K >. ( O UP P ) X ) ) with typecode |-

Proof

Step Hyp Ref Expression
1 isran.o O = oppCat D FuncCat E
2 isran.p P = oppCat C FuncCat E
3 isran.k Could not format ( ph -> ( <. D , E >. -o.F F ) = <. J , K >. ) : No typesetting found for |- ( ph -> ( <. D , E >. -o.F F ) = <. J , K >. ) with typecode |-
4 ranval2.f φ F C Func D
5 3 adantr Could not format ( ( ph /\ x e. ( F ( <. C , D >. Ran E ) X ) ) -> ( <. D , E >. -o.F F ) = <. J , K >. ) : No typesetting found for |- ( ( ph /\ x e. ( F ( <. C , D >. Ran E ) X ) ) -> ( <. D , E >. -o.F F ) = <. J , K >. ) with typecode |-
6 simpr Could not format ( ( ph /\ x e. ( F ( <. C , D >. Ran E ) X ) ) -> x e. ( F ( <. C , D >. Ran E ) X ) ) : No typesetting found for |- ( ( ph /\ x e. ( F ( <. C , D >. Ran E ) X ) ) -> x e. ( F ( <. C , D >. Ran E ) X ) ) with typecode |-
7 1 2 5 6 isran Could not format ( ( ph /\ x e. ( F ( <. C , D >. Ran E ) X ) ) -> x e. ( <. J , tpos K >. ( O UP P ) X ) ) : No typesetting found for |- ( ( ph /\ x e. ( F ( <. C , D >. Ran E ) X ) ) -> x e. ( <. J , tpos K >. ( O UP P ) X ) ) with typecode |-
8 simpr Could not format ( ( ph /\ x e. ( <. J , tpos K >. ( O UP P ) X ) ) -> x e. ( <. J , tpos K >. ( O UP P ) X ) ) : No typesetting found for |- ( ( ph /\ x e. ( <. J , tpos K >. ( O UP P ) X ) ) -> x e. ( <. J , tpos K >. ( O UP P ) X ) ) with typecode |-
9 eqid D FuncCat E = D FuncCat E
10 eqid C FuncCat E = C FuncCat E
11 4 adantr Could not format ( ( ph /\ x e. ( <. J , tpos K >. ( O UP P ) X ) ) -> F e. ( C Func D ) ) : No typesetting found for |- ( ( ph /\ x e. ( <. J , tpos K >. ( O UP P ) X ) ) -> F e. ( C Func D ) ) with typecode |-
12 10 fucbas C Func E = Base C FuncCat E
13 2 12 oppcbas C Func E = Base P
14 13 uprcl Could not format ( x e. ( <. J , tpos K >. ( O UP P ) X ) -> ( <. J , tpos K >. e. ( O Func P ) /\ X e. ( C Func E ) ) ) : No typesetting found for |- ( x e. ( <. J , tpos K >. ( O UP P ) X ) -> ( <. J , tpos K >. e. ( O Func P ) /\ X e. ( C Func E ) ) ) with typecode |-
15 14 simprd Could not format ( x e. ( <. J , tpos K >. ( O UP P ) X ) -> X e. ( C Func E ) ) : No typesetting found for |- ( x e. ( <. J , tpos K >. ( O UP P ) X ) -> X e. ( C Func E ) ) with typecode |-
16 15 adantl Could not format ( ( ph /\ x e. ( <. J , tpos K >. ( O UP P ) X ) ) -> X e. ( C Func E ) ) : No typesetting found for |- ( ( ph /\ x e. ( <. J , tpos K >. ( O UP P ) X ) ) -> X e. ( C Func E ) ) with typecode |-
17 3 adantr Could not format ( ( ph /\ x e. ( <. J , tpos K >. ( O UP P ) X ) ) -> ( <. D , E >. -o.F F ) = <. J , K >. ) : No typesetting found for |- ( ( ph /\ x e. ( <. J , tpos K >. ( O UP P ) X ) ) -> ( <. D , E >. -o.F F ) = <. J , K >. ) with typecode |-
18 9 10 11 16 17 1 2 ranval Could not format ( ( ph /\ x e. ( <. J , tpos K >. ( O UP P ) X ) ) -> ( F ( <. C , D >. Ran E ) X ) = ( <. J , tpos K >. ( O UP P ) X ) ) : No typesetting found for |- ( ( ph /\ x e. ( <. J , tpos K >. ( O UP P ) X ) ) -> ( F ( <. C , D >. Ran E ) X ) = ( <. J , tpos K >. ( O UP P ) X ) ) with typecode |-
19 8 18 eleqtrrd Could not format ( ( ph /\ x e. ( <. J , tpos K >. ( O UP P ) X ) ) -> x e. ( F ( <. C , D >. Ran E ) X ) ) : No typesetting found for |- ( ( ph /\ x e. ( <. J , tpos K >. ( O UP P ) X ) ) -> x e. ( F ( <. C , D >. Ran E ) X ) ) with typecode |-
20 7 19 impbida Could not format ( ph -> ( x e. ( F ( <. C , D >. Ran E ) X ) <-> x e. ( <. J , tpos K >. ( O UP P ) X ) ) ) : No typesetting found for |- ( ph -> ( x e. ( F ( <. C , D >. Ran E ) X ) <-> x e. ( <. J , tpos K >. ( O UP P ) X ) ) ) with typecode |-
21 20 eqrdv Could not format ( ph -> ( F ( <. C , D >. Ran E ) X ) = ( <. J , tpos K >. ( O UP P ) X ) ) : No typesetting found for |- ( ph -> ( F ( <. C , D >. Ran E ) X ) = ( <. J , tpos K >. ( O UP P ) X ) ) with typecode |-