Metamath Proof Explorer


Theorem rblem1

Description: Used to rederive the Lukasiewicz axioms from Russell-Bernays'. (Contributed by Anthony Hart, 18-Aug-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses rblem1.1 ¬φψ
rblem1.2 ¬χθ
Assertion rblem1 ¬φχψθ

Proof

Step Hyp Ref Expression
1 rblem1.1 ¬φψ
2 rblem1.2 ¬χθ
3 rb-ax1 ¬¬χθ¬ψχψθ
4 2 3 anmp ¬ψχψθ
5 rb-ax2 ¬χψψχ
6 rb-ax1 ¬¬φψ¬χφχψ
7 1 6 anmp ¬χφχψ
8 rb-ax2 ¬φχχφ
9 7 8 rbsyl ¬φχχψ
10 5 9 rbsyl ¬φχψχ
11 4 10 rbsyl ¬φχψθ