Metamath Proof Explorer


Theorem rddif2

Description: Variant of rddif . (Contributed by Asger C. Ipsen, 4-Apr-2021)

Ref Expression
Assertion rddif2 A 0 1 2 A + 1 2 A

Proof

Step Hyp Ref Expression
1 rddif A A + 1 2 A 1 2
2 halfre 1 2
3 2 a1i A 1 2
4 id A A
5 4 dnicld1 A A + 1 2 A
6 3 5 subge0d A 0 1 2 A + 1 2 A A + 1 2 A 1 2
7 1 6 mpbird A 0 1 2 A + 1 2 A