Metamath Proof Explorer


Theorem rddif2

Description: Variant of rddif . (Contributed by Asger C. Ipsen, 4-Apr-2021)

Ref Expression
Assertion rddif2 A012A+12A

Proof

Step Hyp Ref Expression
1 rddif AA+12A12
2 halfre 12
3 2 a1i A12
4 id AA
5 4 dnicld1 AA+12A
6 3 5 subge0d A012A+12AA+12A12
7 1 6 mpbird A012A+12A