Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Asger C. Ipsen
Continuous nowhere differentiable functions
rddif2
Next ⟩
dnibndlem1
Metamath Proof Explorer
Ascii
Unicode
Theorem
rddif2
Description:
Variant of
rddif
.
(Contributed by
Asger C. Ipsen
, 4-Apr-2021)
Ref
Expression
Assertion
rddif2
⊢
A
∈
ℝ
→
0
≤
1
2
−
A
+
1
2
−
A
Proof
Step
Hyp
Ref
Expression
1
rddif
⊢
A
∈
ℝ
→
A
+
1
2
−
A
≤
1
2
2
halfre
⊢
1
2
∈
ℝ
3
2
a1i
⊢
A
∈
ℝ
→
1
2
∈
ℝ
4
id
⊢
A
∈
ℝ
→
A
∈
ℝ
5
4
dnicld1
⊢
A
∈
ℝ
→
A
+
1
2
−
A
∈
ℝ
6
3
5
subge0d
⊢
A
∈
ℝ
→
0
≤
1
2
−
A
+
1
2
−
A
↔
A
+
1
2
−
A
≤
1
2
7
1
6
mpbird
⊢
A
∈
ℝ
→
0
≤
1
2
−
A
+
1
2
−
A