Metamath Proof Explorer


Theorem rdg0g

Description: The initial value of the recursive definition generator. (Contributed by NM, 25-Apr-1995)

Ref Expression
Assertion rdg0g ACrecFA=A

Proof

Step Hyp Ref Expression
1 rdgeq2 x=ArecFx=recFA
2 1 fveq1d x=ArecFx=recFA
3 id x=Ax=A
4 2 3 eqeq12d x=ArecFx=xrecFA=A
5 vex xV
6 5 rdg0 recFx=x
7 4 6 vtoclg ACrecFA=A