Metamath Proof Explorer


Theorem reccsc

Description: The reciprocal of cosecant is sine. (Contributed by David A. Wheeler, 14-Mar-2014)

Ref Expression
Assertion reccsc A sin A 0 sin A = 1 csc A

Proof

Step Hyp Ref Expression
1 cscval A sin A 0 csc A = 1 sin A
2 1 oveq2d A sin A 0 1 csc A = 1 1 sin A
3 sincl A sin A
4 recrec sin A sin A 0 1 1 sin A = sin A
5 3 4 sylan A sin A 0 1 1 sin A = sin A
6 2 5 eqtr2d A sin A 0 sin A = 1 csc A