Metamath Proof Explorer


Theorem recsccl

Description: The closure of the cosecant function with a real argument. (Contributed by David A. Wheeler, 15-Mar-2014)

Ref Expression
Assertion recsccl AsinA0cscA

Proof

Step Hyp Ref Expression
1 recn AA
2 cscval AsinA0cscA=1sinA
3 1 2 sylan AsinA0cscA=1sinA
4 resincl AsinA
5 1red A1
6 redivcl 1sinAsinA01sinA
7 5 6 syl3an1 AsinAsinA01sinA
8 4 7 syl3an2 AAsinA01sinA
9 8 3anidm12 AsinA01sinA
10 3 9 eqeltrd AsinA0cscA