| Step | Hyp | Ref | Expression | 
						
							| 1 |  | recn | ⊢ ( 𝐴  ∈  ℝ  →  𝐴  ∈  ℂ ) | 
						
							| 2 |  | cscval | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( sin ‘ 𝐴 )  ≠  0 )  →  ( csc ‘ 𝐴 )  =  ( 1  /  ( sin ‘ 𝐴 ) ) ) | 
						
							| 3 | 1 2 | sylan | ⊢ ( ( 𝐴  ∈  ℝ  ∧  ( sin ‘ 𝐴 )  ≠  0 )  →  ( csc ‘ 𝐴 )  =  ( 1  /  ( sin ‘ 𝐴 ) ) ) | 
						
							| 4 |  | resincl | ⊢ ( 𝐴  ∈  ℝ  →  ( sin ‘ 𝐴 )  ∈  ℝ ) | 
						
							| 5 |  | 1red | ⊢ ( 𝐴  ∈  ℝ  →  1  ∈  ℝ ) | 
						
							| 6 |  | redivcl | ⊢ ( ( 1  ∈  ℝ  ∧  ( sin ‘ 𝐴 )  ∈  ℝ  ∧  ( sin ‘ 𝐴 )  ≠  0 )  →  ( 1  /  ( sin ‘ 𝐴 ) )  ∈  ℝ ) | 
						
							| 7 | 5 6 | syl3an1 | ⊢ ( ( 𝐴  ∈  ℝ  ∧  ( sin ‘ 𝐴 )  ∈  ℝ  ∧  ( sin ‘ 𝐴 )  ≠  0 )  →  ( 1  /  ( sin ‘ 𝐴 ) )  ∈  ℝ ) | 
						
							| 8 | 4 7 | syl3an2 | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐴  ∈  ℝ  ∧  ( sin ‘ 𝐴 )  ≠  0 )  →  ( 1  /  ( sin ‘ 𝐴 ) )  ∈  ℝ ) | 
						
							| 9 | 8 | 3anidm12 | ⊢ ( ( 𝐴  ∈  ℝ  ∧  ( sin ‘ 𝐴 )  ≠  0 )  →  ( 1  /  ( sin ‘ 𝐴 ) )  ∈  ℝ ) | 
						
							| 10 | 3 9 | eqeltrd | ⊢ ( ( 𝐴  ∈  ℝ  ∧  ( sin ‘ 𝐴 )  ≠  0 )  →  ( csc ‘ 𝐴 )  ∈  ℝ ) |