Metamath Proof Explorer


Theorem recsccl

Description: The closure of the cosecant function with a real argument. (Contributed by David A. Wheeler, 15-Mar-2014)

Ref Expression
Assertion recsccl
|- ( ( A e. RR /\ ( sin ` A ) =/= 0 ) -> ( csc ` A ) e. RR )

Proof

Step Hyp Ref Expression
1 recn
 |-  ( A e. RR -> A e. CC )
2 cscval
 |-  ( ( A e. CC /\ ( sin ` A ) =/= 0 ) -> ( csc ` A ) = ( 1 / ( sin ` A ) ) )
3 1 2 sylan
 |-  ( ( A e. RR /\ ( sin ` A ) =/= 0 ) -> ( csc ` A ) = ( 1 / ( sin ` A ) ) )
4 resincl
 |-  ( A e. RR -> ( sin ` A ) e. RR )
5 1red
 |-  ( A e. RR -> 1 e. RR )
6 redivcl
 |-  ( ( 1 e. RR /\ ( sin ` A ) e. RR /\ ( sin ` A ) =/= 0 ) -> ( 1 / ( sin ` A ) ) e. RR )
7 5 6 syl3an1
 |-  ( ( A e. RR /\ ( sin ` A ) e. RR /\ ( sin ` A ) =/= 0 ) -> ( 1 / ( sin ` A ) ) e. RR )
8 4 7 syl3an2
 |-  ( ( A e. RR /\ A e. RR /\ ( sin ` A ) =/= 0 ) -> ( 1 / ( sin ` A ) ) e. RR )
9 8 3anidm12
 |-  ( ( A e. RR /\ ( sin ` A ) =/= 0 ) -> ( 1 / ( sin ` A ) ) e. RR )
10 3 9 eqeltrd
 |-  ( ( A e. RR /\ ( sin ` A ) =/= 0 ) -> ( csc ` A ) e. RR )