Metamath Proof Explorer


Theorem redivcl

Description: Closure law for division of reals. (Contributed by NM, 27-Sep-1999) (Revised by Mario Carneiro, 27-May-2016)

Ref Expression
Assertion redivcl ABB0AB

Proof

Step Hyp Ref Expression
1 simp1 ABB0A
2 1 recnd ABB0A
3 simp2 ABB0B
4 3 recnd ABB0B
5 simp3 ABB0B0
6 divrec ABB0AB=A1B
7 2 4 5 6 syl3anc ABB0AB=A1B
8 rereccl BB01B
9 8 3adant1 ABB01B
10 1 9 remulcld ABB0A1B
11 7 10 eqeltrd ABB0AB