Metamath Proof Explorer


Theorem redundss3

Description: Implication of redundancy predicate. (Contributed by Peter Mazsa, 26-Oct-2022)

Ref Expression
Hypothesis redundss3.1 DC
Assertion redundss3 ARedundBCARedundBD

Proof

Step Hyp Ref Expression
1 redundss3.1 DC
2 ineq1 AC=BCACD=BCD
3 dfss DCD=DC
4 1 3 mpbi D=DC
5 incom DC=CD
6 4 5 eqtri D=CD
7 6 ineq2i AD=ACD
8 inass ACD=ACD
9 7 8 eqtr4i AD=ACD
10 6 ineq2i BD=BCD
11 inass BCD=BCD
12 10 11 eqtr4i BD=BCD
13 2 9 12 3eqtr4g AC=BCAD=BD
14 13 anim2i ABAC=BCABAD=BD
15 df-redund ARedundBCABAC=BC
16 df-redund ARedundBDABAD=BD
17 14 15 16 3imtr4i ARedundBCARedundBD