Metamath Proof Explorer


Theorem reeanlem

Description: Lemma factoring out common proof steps of reeanv and reean . (Contributed by Wolf Lammen, 20-Aug-2023)

Ref Expression
Hypothesis reeanlem.1 xyxAφyBψxxAφyyBψ
Assertion reeanlem xAyBφψxAφyBψ

Proof

Step Hyp Ref Expression
1 reeanlem.1 xyxAφyBψxxAφyyBψ
2 an4 xAyBφψxAφyBψ
3 2 2exbii xyxAyBφψxyxAφyBψ
4 3 1 bitri xyxAyBφψxxAφyyBψ
5 r2ex xAyBφψxyxAyBφψ
6 df-rex xAφxxAφ
7 df-rex yBψyyBψ
8 6 7 anbi12i xAφyBψxxAφyyBψ
9 4 5 8 3bitr4i xAyBφψxAφyBψ