Metamath Proof Explorer


Theorem refsymrel2

Description: A relation which is reflexive and symmetric (like an equivalence relation) can use the restricted version for their reflexive part (see below), not just the (I i^i ( dom R X. ran R ) ) C R version of dfrefrel2 , cf. the comment of dfrefrels2 . (Contributed by Peter Mazsa, 23-Aug-2021)

Ref Expression
Assertion refsymrel2 RefRelRSymRelRIdomRRR-1RRelR

Proof

Step Hyp Ref Expression
1 dfrefrel2 RefRelRIdomR×ranRRRelR
2 dfsymrel2 SymRelRR-1RRelR
3 1 2 anbi12i RefRelRSymRelRIdomR×ranRRRelRR-1RRelR
4 anandi3r IdomR×ranRRRelRR-1RIdomR×ranRRRelRR-1RRelR
5 3anan32 IdomR×ranRRRelRR-1RIdomR×ranRRR-1RRelR
6 3 4 5 3bitr2i RefRelRSymRelRIdomR×ranRRR-1RRelR
7 symrefref2 R-1RIdomR×ranRRIdomRR
8 7 pm5.32ri IdomR×ranRRR-1RIdomRRR-1R
9 8 anbi1i IdomR×ranRRR-1RRelRIdomRRR-1RRelR
10 6 9 bitri RefRelRSymRelRIdomRRR-1RRelR