Metamath Proof Explorer


Theorem reixi

Description: ixi without ax-mulcom . (Contributed by SN, 5-May-2024)

Ref Expression
Assertion reixi ii=0-1

Proof

Step Hyp Ref Expression
1 ax-i2m1 ii+1=0
2 1re 1
3 renegid2 10-1+1=0
4 2 3 ax-mp 0-1+1=0
5 1 4 eqtr4i ii+1=0-1+1
6 ax-icn i
7 6 6 mulcli ii
8 7 a1i ii
9 rernegcl 10-1
10 9 recnd 10-1
11 2 10 mp1i 0-1
12 1cnd 1
13 8 11 12 sn-addcan2d ii+1=0-1+1ii=0-1
14 5 13 mpbii ii=0-1
15 14 mptru ii=0-1