Metamath Proof Explorer


Theorem relcnvexb

Description: A relation is a set iff its converse is a set. (Contributed by FL, 3-Mar-2007)

Ref Expression
Assertion relcnvexb RelRRVR-1V

Proof

Step Hyp Ref Expression
1 cnvexg RVR-1V
2 dfrel2 RelRR-1-1=R
3 cnvexg R-1VR-1-1V
4 eleq1 R-1-1=RR-1-1VRV
5 3 4 imbitrid R-1-1=RR-1VRV
6 2 5 sylbi RelRR-1VRV
7 1 6 impbid2 RelRRVR-1V