Metamath Proof Explorer


Theorem reldm0

Description: A relation is empty iff its domain is empty. (Contributed by NM, 15-Sep-2004)

Ref Expression
Assertion reldm0 RelAA=domA=

Proof

Step Hyp Ref Expression
1 rel0 Rel
2 eqrel RelARelA=xyxyAxy
3 1 2 mpan2 RelAA=xyxyAxy
4 eq0 domA=x¬xdomA
5 alnex y¬xyA¬yxyA
6 vex xV
7 6 eldm2 xdomAyxyA
8 5 7 xchbinxr y¬xyA¬xdomA
9 noel ¬xy
10 9 nbn ¬xyAxyAxy
11 10 albii y¬xyAyxyAxy
12 8 11 bitr3i ¬xdomAyxyAxy
13 12 albii x¬xdomAxyxyAxy
14 4 13 bitr2i xyxyAxydomA=
15 3 14 bitrdi RelAA=domA=