Metamath Proof Explorer


Theorem reldv

Description: The derivative function is a relation. (Contributed by Mario Carneiro, 7-Aug-2014) (Revised by Mario Carneiro, 24-Dec-2016)

Ref Expression
Assertion reldv RelFS

Proof

Step Hyp Ref Expression
1 relxp Relx×zdomfxfzfxzxlimx
2 1 rgenw xintTopOpenfld𝑡sdomfRelx×zdomfxfzfxzxlimx
3 reliun RelxintTopOpenfld𝑡sdomfx×zdomfxfzfxzxlimxxintTopOpenfld𝑡sdomfRelx×zdomfxfzfxzxlimx
4 2 3 mpbir RelxintTopOpenfld𝑡sdomfx×zdomfxfzfxzxlimx
5 df-rel RelxintTopOpenfld𝑡sdomfx×zdomfxfzfxzxlimxxintTopOpenfld𝑡sdomfx×zdomfxfzfxzxlimxV×V
6 4 5 mpbi xintTopOpenfld𝑡sdomfx×zdomfxfzfxzxlimxV×V
7 6 rgenw f𝑝𝑚sxintTopOpenfld𝑡sdomfx×zdomfxfzfxzxlimxV×V
8 7 rgenw s𝒫f𝑝𝑚sxintTopOpenfld𝑡sdomfx×zdomfxfzfxzxlimxV×V
9 df-dv D=s𝒫,f𝑝𝑚sxintTopOpenfld𝑡sdomfx×zdomfxfzfxzxlimx
10 9 ovmptss s𝒫f𝑝𝑚sxintTopOpenfld𝑡sdomfx×zdomfxfzfxzxlimxV×VSDFV×V
11 8 10 ax-mp SDFV×V
12 df-rel RelFSSDFV×V
13 11 12 mpbir RelFS