Description: Lemma for ellimc . (Contributed by Mario Carneiro, 25-Dec-2016)
Ref | Expression | ||
---|---|---|---|
Hypotheses | limcval.j | |
|
limcval.k | |
||
limcvallem.g | |
||
Assertion | limcvallem | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | limcval.j | |
|
2 | limcval.k | |
|
3 | limcvallem.g | |
|
4 | iftrue | |
|
5 | 4 | eleq1d | |
6 | 2 | cnfldtopon | |
7 | simpl2 | |
|
8 | simpl3 | |
|
9 | 8 | snssd | |
10 | 7 9 | unssd | |
11 | resttopon | |
|
12 | 6 10 11 | sylancr | |
13 | 1 12 | eqeltrid | |
14 | 6 | a1i | |
15 | simpr | |
|
16 | cnpf2 | |
|
17 | 13 14 15 16 | syl3anc | |
18 | 3 | fmpt | |
19 | 17 18 | sylibr | |
20 | ssun2 | |
|
21 | snssg | |
|
22 | 8 21 | syl | |
23 | 20 22 | mpbiri | |
24 | 5 19 23 | rspcdva | |
25 | 24 | ex | |