Metamath Proof Explorer


Theorem limcvallem

Description: Lemma for ellimc . (Contributed by Mario Carneiro, 25-Dec-2016)

Ref Expression
Hypotheses limcval.j J=K𝑡AB
limcval.k K=TopOpenfld
limcvallem.g G=zABifz=BCFz
Assertion limcvallem F:AABGJCnPKBC

Proof

Step Hyp Ref Expression
1 limcval.j J=K𝑡AB
2 limcval.k K=TopOpenfld
3 limcvallem.g G=zABifz=BCFz
4 iftrue z=Bifz=BCFz=C
5 4 eleq1d z=Bifz=BCFzC
6 2 cnfldtopon KTopOn
7 simpl2 F:AABGJCnPKBA
8 simpl3 F:AABGJCnPKBB
9 8 snssd F:AABGJCnPKBB
10 7 9 unssd F:AABGJCnPKBAB
11 resttopon KTopOnABK𝑡ABTopOnAB
12 6 10 11 sylancr F:AABGJCnPKBK𝑡ABTopOnAB
13 1 12 eqeltrid F:AABGJCnPKBJTopOnAB
14 6 a1i F:AABGJCnPKBKTopOn
15 simpr F:AABGJCnPKBGJCnPKB
16 cnpf2 JTopOnABKTopOnGJCnPKBG:AB
17 13 14 15 16 syl3anc F:AABGJCnPKBG:AB
18 3 fmpt zABifz=BCFzG:AB
19 17 18 sylibr F:AABGJCnPKBzABifz=BCFz
20 ssun2 BAB
21 snssg BBABBAB
22 8 21 syl F:AABGJCnPKBBABBAB
23 20 22 mpbiri F:AABGJCnPKBBAB
24 5 19 23 rspcdva F:AABGJCnPKBC
25 24 ex F:AABGJCnPKBC