Metamath Proof Explorer


Theorem releldmqs

Description: Elementhood in the domain quotient of a relation. (Contributed by Peter Mazsa, 24-Apr-2021)

Ref Expression
Assertion releldmqs AVRelRAdomR/RudomRxuRA=uR

Proof

Step Hyp Ref Expression
1 resdm RelRRdomR=R
2 1 dmqseqd RelRdomRdomR/RdomR=domR/R
3 2 eleq2d RelRAdomRdomR/RdomRAdomR/R
4 3 adantl AVRelRAdomRdomR/RdomRAdomR/R
5 eldmqsres2 AVAdomRdomR/RdomRudomRxuRA=uR
6 5 adantr AVRelRAdomRdomR/RdomRudomRxuRA=uR
7 4 6 bitr3d AVRelRAdomR/RudomRxuRA=uR
8 7 ex AVRelRAdomR/RudomRxuRA=uR