Metamath Proof Explorer


Theorem relexpcnvd

Description: Commutation of converse and relation exponentiation. (Contributed by Drahflow, 12-Nov-2015) (Revised by RP, 30-May-2020) (Revised by AV, 12-Jul-2024)

Ref Expression
Hypotheses relexpcnvd.1 φRV
relexpcnvd.2 φN0
Assertion relexpcnvd φRrN-1=R-1rN

Proof

Step Hyp Ref Expression
1 relexpcnvd.1 φRV
2 relexpcnvd.2 φN0
3 relexpcnv N0RVRrN-1=R-1rN
4 2 1 3 syl2anc φRrN-1=R-1rN