Metamath Proof Explorer


Theorem relexpcnvd

Description: Commutation of converse and relation exponentiation. (Contributed by Drahflow, 12-Nov-2015) (Revised by RP, 30-May-2020) (Revised by AV, 12-Jul-2024)

Ref Expression
Hypotheses relexpcnvd.1 φ R V
relexpcnvd.2 φ N 0
Assertion relexpcnvd φ R r N -1 = R -1 r N

Proof

Step Hyp Ref Expression
1 relexpcnvd.1 φ R V
2 relexpcnvd.2 φ N 0
3 relexpcnv N 0 R V R r N -1 = R -1 r N
4 2 1 3 syl2anc φ R r N -1 = R -1 r N