Metamath Proof Explorer


Theorem relexpdmd

Description: The domain of an exponentiation of a relation a subset of the relation's field. (Contributed by Drahflow, 12-Nov-2015) (Revised by RP, 30-May-2020) (Revised by AV, 12-Jul-2024)

Ref Expression
Hypothesis relexpdmd.1 φ N 0
Assertion relexpdmd φ dom R r N R

Proof

Step Hyp Ref Expression
1 relexpdmd.1 φ N 0
2 relexpdm N 0 R V dom R r N R
3 1 2 sylan φ R V dom R r N R
4 3 ex φ R V dom R r N R
5 reldmrelexp Rel dom r
6 5 ovprc1 ¬ R V R r N =
7 6 dmeqd ¬ R V dom R r N = dom
8 dm0 dom =
9 7 8 eqtrdi ¬ R V dom R r N =
10 0ss R
11 9 10 eqsstrdi ¬ R V dom R r N R
12 4 11 pm2.61d1 φ dom R r N R