Metamath Proof Explorer


Theorem relexpind

Description: Principle of transitive induction, finite version. The first three hypotheses give various existences, the next four give necessary substitutions and the last two are the basis and the induction hypothesis. (Contributed by Drahflow, 12-Nov-2015) (Revised by RP, 30-May-2020) (Revised by AV, 13-Jul-2024)

Ref Expression
Hypotheses relexpind.1 ηRelR
relexpind.2 ηSV
relexpind.3 ηXW
relexpind.4 i=Sφχ
relexpind.5 i=xφψ
relexpind.6 i=jφθ
relexpind.7 x=Xψτ
relexpind.8 ηχ
relexpind.9 ηjRxθψ
Assertion relexpind ηn0SRrnXτ

Proof

Step Hyp Ref Expression
1 relexpind.1 ηRelR
2 relexpind.2 ηSV
3 relexpind.3 ηXW
4 relexpind.4 i=Sφχ
5 relexpind.5 i=xφψ
6 relexpind.6 i=jφθ
7 relexpind.7 x=Xψτ
8 relexpind.8 ηχ
9 relexpind.9 ηjRxθψ
10 breq2 x=XSRrnxSRrnX
11 10 imbi1d x=XSRrnxτSRrnXτ
12 11 imbi2d x=Xn0SRrnxτn0SRrnXτ
13 12 imbi2d x=Xηn0SRrnxτηn0SRrnXτ
14 imbi2 ψτSRrnxψSRrnxτ
15 14 imbi2d ψτn0SRrnxψn0SRrnxτ
16 15 imbi2d ψτηn0SRrnxψηn0SRrnxτ
17 16 bibi1d ψτηn0SRrnxψηn0SRrnXτηn0SRrnxτηn0SRrnXτ
18 13 17 imbitrrid ψτx=Xηn0SRrnxψηn0SRrnXτ
19 7 18 mpcom x=Xηn0SRrnxψηn0SRrnXτ
20 1 2 4 5 6 8 9 relexpindlem ηn0SRrnxψ
21 19 20 vtoclg XWηn0SRrnXτ
22 3 21 mpcom ηn0SRrnXτ