| Step | Hyp | Ref | Expression | 
						
							| 1 |  | relexpind.1 | ⊢ ( 𝜂  →  Rel  𝑅 ) | 
						
							| 2 |  | relexpind.2 | ⊢ ( 𝜂  →  𝑆  ∈  𝑉 ) | 
						
							| 3 |  | relexpind.3 | ⊢ ( 𝜂  →  𝑋  ∈  𝑊 ) | 
						
							| 4 |  | relexpind.4 | ⊢ ( 𝑖  =  𝑆  →  ( 𝜑  ↔  𝜒 ) ) | 
						
							| 5 |  | relexpind.5 | ⊢ ( 𝑖  =  𝑥  →  ( 𝜑  ↔  𝜓 ) ) | 
						
							| 6 |  | relexpind.6 | ⊢ ( 𝑖  =  𝑗  →  ( 𝜑  ↔  𝜃 ) ) | 
						
							| 7 |  | relexpind.7 | ⊢ ( 𝑥  =  𝑋  →  ( 𝜓  ↔  𝜏 ) ) | 
						
							| 8 |  | relexpind.8 | ⊢ ( 𝜂  →  𝜒 ) | 
						
							| 9 |  | relexpind.9 | ⊢ ( 𝜂  →  ( 𝑗 𝑅 𝑥  →  ( 𝜃  →  𝜓 ) ) ) | 
						
							| 10 |  | breq2 | ⊢ ( 𝑥  =  𝑋  →  ( 𝑆 ( 𝑅 ↑𝑟 𝑛 ) 𝑥  ↔  𝑆 ( 𝑅 ↑𝑟 𝑛 ) 𝑋 ) ) | 
						
							| 11 | 10 | imbi1d | ⊢ ( 𝑥  =  𝑋  →  ( ( 𝑆 ( 𝑅 ↑𝑟 𝑛 ) 𝑥  →  𝜏 )  ↔  ( 𝑆 ( 𝑅 ↑𝑟 𝑛 ) 𝑋  →  𝜏 ) ) ) | 
						
							| 12 | 11 | imbi2d | ⊢ ( 𝑥  =  𝑋  →  ( ( 𝑛  ∈  ℕ0  →  ( 𝑆 ( 𝑅 ↑𝑟 𝑛 ) 𝑥  →  𝜏 ) )  ↔  ( 𝑛  ∈  ℕ0  →  ( 𝑆 ( 𝑅 ↑𝑟 𝑛 ) 𝑋  →  𝜏 ) ) ) ) | 
						
							| 13 | 12 | imbi2d | ⊢ ( 𝑥  =  𝑋  →  ( ( 𝜂  →  ( 𝑛  ∈  ℕ0  →  ( 𝑆 ( 𝑅 ↑𝑟 𝑛 ) 𝑥  →  𝜏 ) ) )  ↔  ( 𝜂  →  ( 𝑛  ∈  ℕ0  →  ( 𝑆 ( 𝑅 ↑𝑟 𝑛 ) 𝑋  →  𝜏 ) ) ) ) ) | 
						
							| 14 |  | imbi2 | ⊢ ( ( 𝜓  ↔  𝜏 )  →  ( ( 𝑆 ( 𝑅 ↑𝑟 𝑛 ) 𝑥  →  𝜓 )  ↔  ( 𝑆 ( 𝑅 ↑𝑟 𝑛 ) 𝑥  →  𝜏 ) ) ) | 
						
							| 15 | 14 | imbi2d | ⊢ ( ( 𝜓  ↔  𝜏 )  →  ( ( 𝑛  ∈  ℕ0  →  ( 𝑆 ( 𝑅 ↑𝑟 𝑛 ) 𝑥  →  𝜓 ) )  ↔  ( 𝑛  ∈  ℕ0  →  ( 𝑆 ( 𝑅 ↑𝑟 𝑛 ) 𝑥  →  𝜏 ) ) ) ) | 
						
							| 16 | 15 | imbi2d | ⊢ ( ( 𝜓  ↔  𝜏 )  →  ( ( 𝜂  →  ( 𝑛  ∈  ℕ0  →  ( 𝑆 ( 𝑅 ↑𝑟 𝑛 ) 𝑥  →  𝜓 ) ) )  ↔  ( 𝜂  →  ( 𝑛  ∈  ℕ0  →  ( 𝑆 ( 𝑅 ↑𝑟 𝑛 ) 𝑥  →  𝜏 ) ) ) ) ) | 
						
							| 17 | 16 | bibi1d | ⊢ ( ( 𝜓  ↔  𝜏 )  →  ( ( ( 𝜂  →  ( 𝑛  ∈  ℕ0  →  ( 𝑆 ( 𝑅 ↑𝑟 𝑛 ) 𝑥  →  𝜓 ) ) )  ↔  ( 𝜂  →  ( 𝑛  ∈  ℕ0  →  ( 𝑆 ( 𝑅 ↑𝑟 𝑛 ) 𝑋  →  𝜏 ) ) ) )  ↔  ( ( 𝜂  →  ( 𝑛  ∈  ℕ0  →  ( 𝑆 ( 𝑅 ↑𝑟 𝑛 ) 𝑥  →  𝜏 ) ) )  ↔  ( 𝜂  →  ( 𝑛  ∈  ℕ0  →  ( 𝑆 ( 𝑅 ↑𝑟 𝑛 ) 𝑋  →  𝜏 ) ) ) ) ) ) | 
						
							| 18 | 13 17 | imbitrrid | ⊢ ( ( 𝜓  ↔  𝜏 )  →  ( 𝑥  =  𝑋  →  ( ( 𝜂  →  ( 𝑛  ∈  ℕ0  →  ( 𝑆 ( 𝑅 ↑𝑟 𝑛 ) 𝑥  →  𝜓 ) ) )  ↔  ( 𝜂  →  ( 𝑛  ∈  ℕ0  →  ( 𝑆 ( 𝑅 ↑𝑟 𝑛 ) 𝑋  →  𝜏 ) ) ) ) ) ) | 
						
							| 19 | 7 18 | mpcom | ⊢ ( 𝑥  =  𝑋  →  ( ( 𝜂  →  ( 𝑛  ∈  ℕ0  →  ( 𝑆 ( 𝑅 ↑𝑟 𝑛 ) 𝑥  →  𝜓 ) ) )  ↔  ( 𝜂  →  ( 𝑛  ∈  ℕ0  →  ( 𝑆 ( 𝑅 ↑𝑟 𝑛 ) 𝑋  →  𝜏 ) ) ) ) ) | 
						
							| 20 | 1 2 4 5 6 8 9 | relexpindlem | ⊢ ( 𝜂  →  ( 𝑛  ∈  ℕ0  →  ( 𝑆 ( 𝑅 ↑𝑟 𝑛 ) 𝑥  →  𝜓 ) ) ) | 
						
							| 21 | 19 20 | vtoclg | ⊢ ( 𝑋  ∈  𝑊  →  ( 𝜂  →  ( 𝑛  ∈  ℕ0  →  ( 𝑆 ( 𝑅 ↑𝑟 𝑛 ) 𝑋  →  𝜏 ) ) ) ) | 
						
							| 22 | 3 21 | mpcom | ⊢ ( 𝜂  →  ( 𝑛  ∈  ℕ0  →  ( 𝑆 ( 𝑅 ↑𝑟 𝑛 ) 𝑋  →  𝜏 ) ) ) |