| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rtrclind.1 | ⊢ ( 𝜂  →  Rel  𝑅 ) | 
						
							| 2 |  | rtrclind.2 | ⊢ ( 𝜂  →  𝑆  ∈  𝑉 ) | 
						
							| 3 |  | rtrclind.3 | ⊢ ( 𝜂  →  𝑋  ∈  𝑊 ) | 
						
							| 4 |  | rtrclind.4 | ⊢ ( 𝑖  =  𝑆  →  ( 𝜑  ↔  𝜒 ) ) | 
						
							| 5 |  | rtrclind.5 | ⊢ ( 𝑖  =  𝑥  →  ( 𝜑  ↔  𝜓 ) ) | 
						
							| 6 |  | rtrclind.6 | ⊢ ( 𝑖  =  𝑗  →  ( 𝜑  ↔  𝜃 ) ) | 
						
							| 7 |  | rtrclind.7 | ⊢ ( 𝑥  =  𝑋  →  ( 𝜓  ↔  𝜏 ) ) | 
						
							| 8 |  | rtrclind.8 | ⊢ ( 𝜂  →  𝜒 ) | 
						
							| 9 |  | rtrclind.9 | ⊢ ( 𝜂  →  ( 𝑗 𝑅 𝑥  →  ( 𝜃  →  𝜓 ) ) ) | 
						
							| 10 | 1 | dfrtrcl2 | ⊢ ( 𝜂  →  ( t* ‘ 𝑅 )  =  ( t*rec ‘ 𝑅 ) ) | 
						
							| 11 | 1 | dfrtrclrec2 | ⊢ ( 𝜂  →  ( 𝑆 ( t*rec ‘ 𝑅 ) 𝑋  ↔  ∃ 𝑛  ∈  ℕ0 𝑆 ( 𝑅 ↑𝑟 𝑛 ) 𝑋 ) ) | 
						
							| 12 | 11 | biimpac | ⊢ ( ( 𝑆 ( t*rec ‘ 𝑅 ) 𝑋  ∧  𝜂 )  →  ∃ 𝑛  ∈  ℕ0 𝑆 ( 𝑅 ↑𝑟 𝑛 ) 𝑋 ) | 
						
							| 13 |  | simprl | ⊢ ( ( 𝑆 ( t*rec ‘ 𝑅 ) 𝑋  ∧  ( 𝜂  ∧  ( 𝑆 ( 𝑅 ↑𝑟 𝑛 ) 𝑋  ∧  𝑛  ∈  ℕ0 ) ) )  →  𝜂 ) | 
						
							| 14 |  | simprrr | ⊢ ( ( 𝑆 ( t*rec ‘ 𝑅 ) 𝑋  ∧  ( 𝜂  ∧  ( 𝑆 ( 𝑅 ↑𝑟 𝑛 ) 𝑋  ∧  𝑛  ∈  ℕ0 ) ) )  →  𝑛  ∈  ℕ0 ) | 
						
							| 15 |  | simprrl | ⊢ ( ( 𝑆 ( t*rec ‘ 𝑅 ) 𝑋  ∧  ( 𝜂  ∧  ( 𝑆 ( 𝑅 ↑𝑟 𝑛 ) 𝑋  ∧  𝑛  ∈  ℕ0 ) ) )  →  𝑆 ( 𝑅 ↑𝑟 𝑛 ) 𝑋 ) | 
						
							| 16 | 1 2 3 4 5 6 7 8 9 | relexpind | ⊢ ( 𝜂  →  ( 𝑛  ∈  ℕ0  →  ( 𝑆 ( 𝑅 ↑𝑟 𝑛 ) 𝑋  →  𝜏 ) ) ) | 
						
							| 17 | 13 14 15 16 | syl3c | ⊢ ( ( 𝑆 ( t*rec ‘ 𝑅 ) 𝑋  ∧  ( 𝜂  ∧  ( 𝑆 ( 𝑅 ↑𝑟 𝑛 ) 𝑋  ∧  𝑛  ∈  ℕ0 ) ) )  →  𝜏 ) | 
						
							| 18 | 17 | anassrs | ⊢ ( ( ( 𝑆 ( t*rec ‘ 𝑅 ) 𝑋  ∧  𝜂 )  ∧  ( 𝑆 ( 𝑅 ↑𝑟 𝑛 ) 𝑋  ∧  𝑛  ∈  ℕ0 ) )  →  𝜏 ) | 
						
							| 19 | 18 | expcom | ⊢ ( ( 𝑆 ( 𝑅 ↑𝑟 𝑛 ) 𝑋  ∧  𝑛  ∈  ℕ0 )  →  ( ( 𝑆 ( t*rec ‘ 𝑅 ) 𝑋  ∧  𝜂 )  →  𝜏 ) ) | 
						
							| 20 | 19 | expcom | ⊢ ( 𝑛  ∈  ℕ0  →  ( 𝑆 ( 𝑅 ↑𝑟 𝑛 ) 𝑋  →  ( ( 𝑆 ( t*rec ‘ 𝑅 ) 𝑋  ∧  𝜂 )  →  𝜏 ) ) ) | 
						
							| 21 | 20 | rexlimiv | ⊢ ( ∃ 𝑛  ∈  ℕ0 𝑆 ( 𝑅 ↑𝑟 𝑛 ) 𝑋  →  ( ( 𝑆 ( t*rec ‘ 𝑅 ) 𝑋  ∧  𝜂 )  →  𝜏 ) ) | 
						
							| 22 | 12 21 | mpcom | ⊢ ( ( 𝑆 ( t*rec ‘ 𝑅 ) 𝑋  ∧  𝜂 )  →  𝜏 ) | 
						
							| 23 | 22 | expcom | ⊢ ( 𝜂  →  ( 𝑆 ( t*rec ‘ 𝑅 ) 𝑋  →  𝜏 ) ) | 
						
							| 24 |  | breq | ⊢ ( ( t* ‘ 𝑅 )  =  ( t*rec ‘ 𝑅 )  →  ( 𝑆 ( t* ‘ 𝑅 ) 𝑋  ↔  𝑆 ( t*rec ‘ 𝑅 ) 𝑋 ) ) | 
						
							| 25 | 24 | imbi1d | ⊢ ( ( t* ‘ 𝑅 )  =  ( t*rec ‘ 𝑅 )  →  ( ( 𝑆 ( t* ‘ 𝑅 ) 𝑋  →  𝜏 )  ↔  ( 𝑆 ( t*rec ‘ 𝑅 ) 𝑋  →  𝜏 ) ) ) | 
						
							| 26 | 23 25 | imbitrrid | ⊢ ( ( t* ‘ 𝑅 )  =  ( t*rec ‘ 𝑅 )  →  ( 𝜂  →  ( 𝑆 ( t* ‘ 𝑅 ) 𝑋  →  𝜏 ) ) ) | 
						
							| 27 | 10 26 | mpcom | ⊢ ( 𝜂  →  ( 𝑆 ( t* ‘ 𝑅 ) 𝑋  →  𝜏 ) ) |