| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rtrclind.1 |
⊢ ( 𝜂 → Rel 𝑅 ) |
| 2 |
|
rtrclind.2 |
⊢ ( 𝜂 → 𝑆 ∈ 𝑉 ) |
| 3 |
|
rtrclind.3 |
⊢ ( 𝜂 → 𝑋 ∈ 𝑊 ) |
| 4 |
|
rtrclind.4 |
⊢ ( 𝑖 = 𝑆 → ( 𝜑 ↔ 𝜒 ) ) |
| 5 |
|
rtrclind.5 |
⊢ ( 𝑖 = 𝑥 → ( 𝜑 ↔ 𝜓 ) ) |
| 6 |
|
rtrclind.6 |
⊢ ( 𝑖 = 𝑗 → ( 𝜑 ↔ 𝜃 ) ) |
| 7 |
|
rtrclind.7 |
⊢ ( 𝑥 = 𝑋 → ( 𝜓 ↔ 𝜏 ) ) |
| 8 |
|
rtrclind.8 |
⊢ ( 𝜂 → 𝜒 ) |
| 9 |
|
rtrclind.9 |
⊢ ( 𝜂 → ( 𝑗 𝑅 𝑥 → ( 𝜃 → 𝜓 ) ) ) |
| 10 |
1
|
dfrtrcl2 |
⊢ ( 𝜂 → ( t* ‘ 𝑅 ) = ( t*rec ‘ 𝑅 ) ) |
| 11 |
1
|
dfrtrclrec2 |
⊢ ( 𝜂 → ( 𝑆 ( t*rec ‘ 𝑅 ) 𝑋 ↔ ∃ 𝑛 ∈ ℕ0 𝑆 ( 𝑅 ↑𝑟 𝑛 ) 𝑋 ) ) |
| 12 |
11
|
biimpac |
⊢ ( ( 𝑆 ( t*rec ‘ 𝑅 ) 𝑋 ∧ 𝜂 ) → ∃ 𝑛 ∈ ℕ0 𝑆 ( 𝑅 ↑𝑟 𝑛 ) 𝑋 ) |
| 13 |
|
simprl |
⊢ ( ( 𝑆 ( t*rec ‘ 𝑅 ) 𝑋 ∧ ( 𝜂 ∧ ( 𝑆 ( 𝑅 ↑𝑟 𝑛 ) 𝑋 ∧ 𝑛 ∈ ℕ0 ) ) ) → 𝜂 ) |
| 14 |
|
simprrr |
⊢ ( ( 𝑆 ( t*rec ‘ 𝑅 ) 𝑋 ∧ ( 𝜂 ∧ ( 𝑆 ( 𝑅 ↑𝑟 𝑛 ) 𝑋 ∧ 𝑛 ∈ ℕ0 ) ) ) → 𝑛 ∈ ℕ0 ) |
| 15 |
|
simprrl |
⊢ ( ( 𝑆 ( t*rec ‘ 𝑅 ) 𝑋 ∧ ( 𝜂 ∧ ( 𝑆 ( 𝑅 ↑𝑟 𝑛 ) 𝑋 ∧ 𝑛 ∈ ℕ0 ) ) ) → 𝑆 ( 𝑅 ↑𝑟 𝑛 ) 𝑋 ) |
| 16 |
1 2 3 4 5 6 7 8 9
|
relexpind |
⊢ ( 𝜂 → ( 𝑛 ∈ ℕ0 → ( 𝑆 ( 𝑅 ↑𝑟 𝑛 ) 𝑋 → 𝜏 ) ) ) |
| 17 |
13 14 15 16
|
syl3c |
⊢ ( ( 𝑆 ( t*rec ‘ 𝑅 ) 𝑋 ∧ ( 𝜂 ∧ ( 𝑆 ( 𝑅 ↑𝑟 𝑛 ) 𝑋 ∧ 𝑛 ∈ ℕ0 ) ) ) → 𝜏 ) |
| 18 |
17
|
anassrs |
⊢ ( ( ( 𝑆 ( t*rec ‘ 𝑅 ) 𝑋 ∧ 𝜂 ) ∧ ( 𝑆 ( 𝑅 ↑𝑟 𝑛 ) 𝑋 ∧ 𝑛 ∈ ℕ0 ) ) → 𝜏 ) |
| 19 |
18
|
expcom |
⊢ ( ( 𝑆 ( 𝑅 ↑𝑟 𝑛 ) 𝑋 ∧ 𝑛 ∈ ℕ0 ) → ( ( 𝑆 ( t*rec ‘ 𝑅 ) 𝑋 ∧ 𝜂 ) → 𝜏 ) ) |
| 20 |
19
|
expcom |
⊢ ( 𝑛 ∈ ℕ0 → ( 𝑆 ( 𝑅 ↑𝑟 𝑛 ) 𝑋 → ( ( 𝑆 ( t*rec ‘ 𝑅 ) 𝑋 ∧ 𝜂 ) → 𝜏 ) ) ) |
| 21 |
20
|
rexlimiv |
⊢ ( ∃ 𝑛 ∈ ℕ0 𝑆 ( 𝑅 ↑𝑟 𝑛 ) 𝑋 → ( ( 𝑆 ( t*rec ‘ 𝑅 ) 𝑋 ∧ 𝜂 ) → 𝜏 ) ) |
| 22 |
12 21
|
mpcom |
⊢ ( ( 𝑆 ( t*rec ‘ 𝑅 ) 𝑋 ∧ 𝜂 ) → 𝜏 ) |
| 23 |
22
|
expcom |
⊢ ( 𝜂 → ( 𝑆 ( t*rec ‘ 𝑅 ) 𝑋 → 𝜏 ) ) |
| 24 |
|
breq |
⊢ ( ( t* ‘ 𝑅 ) = ( t*rec ‘ 𝑅 ) → ( 𝑆 ( t* ‘ 𝑅 ) 𝑋 ↔ 𝑆 ( t*rec ‘ 𝑅 ) 𝑋 ) ) |
| 25 |
24
|
imbi1d |
⊢ ( ( t* ‘ 𝑅 ) = ( t*rec ‘ 𝑅 ) → ( ( 𝑆 ( t* ‘ 𝑅 ) 𝑋 → 𝜏 ) ↔ ( 𝑆 ( t*rec ‘ 𝑅 ) 𝑋 → 𝜏 ) ) ) |
| 26 |
23 25
|
imbitrrid |
⊢ ( ( t* ‘ 𝑅 ) = ( t*rec ‘ 𝑅 ) → ( 𝜂 → ( 𝑆 ( t* ‘ 𝑅 ) 𝑋 → 𝜏 ) ) ) |
| 27 |
10 26
|
mpcom |
⊢ ( 𝜂 → ( 𝑆 ( t* ‘ 𝑅 ) 𝑋 → 𝜏 ) ) |