| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rtrclind.1 |  |-  ( et -> Rel R ) | 
						
							| 2 |  | rtrclind.2 |  |-  ( et -> S e. V ) | 
						
							| 3 |  | rtrclind.3 |  |-  ( et -> X e. W ) | 
						
							| 4 |  | rtrclind.4 |  |-  ( i = S -> ( ph <-> ch ) ) | 
						
							| 5 |  | rtrclind.5 |  |-  ( i = x -> ( ph <-> ps ) ) | 
						
							| 6 |  | rtrclind.6 |  |-  ( i = j -> ( ph <-> th ) ) | 
						
							| 7 |  | rtrclind.7 |  |-  ( x = X -> ( ps <-> ta ) ) | 
						
							| 8 |  | rtrclind.8 |  |-  ( et -> ch ) | 
						
							| 9 |  | rtrclind.9 |  |-  ( et -> ( j R x -> ( th -> ps ) ) ) | 
						
							| 10 | 1 | dfrtrcl2 |  |-  ( et -> ( t* ` R ) = ( t*rec ` R ) ) | 
						
							| 11 | 1 | dfrtrclrec2 |  |-  ( et -> ( S ( t*rec ` R ) X <-> E. n e. NN0 S ( R ^r n ) X ) ) | 
						
							| 12 | 11 | biimpac |  |-  ( ( S ( t*rec ` R ) X /\ et ) -> E. n e. NN0 S ( R ^r n ) X ) | 
						
							| 13 |  | simprl |  |-  ( ( S ( t*rec ` R ) X /\ ( et /\ ( S ( R ^r n ) X /\ n e. NN0 ) ) ) -> et ) | 
						
							| 14 |  | simprrr |  |-  ( ( S ( t*rec ` R ) X /\ ( et /\ ( S ( R ^r n ) X /\ n e. NN0 ) ) ) -> n e. NN0 ) | 
						
							| 15 |  | simprrl |  |-  ( ( S ( t*rec ` R ) X /\ ( et /\ ( S ( R ^r n ) X /\ n e. NN0 ) ) ) -> S ( R ^r n ) X ) | 
						
							| 16 | 1 2 3 4 5 6 7 8 9 | relexpind |  |-  ( et -> ( n e. NN0 -> ( S ( R ^r n ) X -> ta ) ) ) | 
						
							| 17 | 13 14 15 16 | syl3c |  |-  ( ( S ( t*rec ` R ) X /\ ( et /\ ( S ( R ^r n ) X /\ n e. NN0 ) ) ) -> ta ) | 
						
							| 18 | 17 | anassrs |  |-  ( ( ( S ( t*rec ` R ) X /\ et ) /\ ( S ( R ^r n ) X /\ n e. NN0 ) ) -> ta ) | 
						
							| 19 | 18 | expcom |  |-  ( ( S ( R ^r n ) X /\ n e. NN0 ) -> ( ( S ( t*rec ` R ) X /\ et ) -> ta ) ) | 
						
							| 20 | 19 | expcom |  |-  ( n e. NN0 -> ( S ( R ^r n ) X -> ( ( S ( t*rec ` R ) X /\ et ) -> ta ) ) ) | 
						
							| 21 | 20 | rexlimiv |  |-  ( E. n e. NN0 S ( R ^r n ) X -> ( ( S ( t*rec ` R ) X /\ et ) -> ta ) ) | 
						
							| 22 | 12 21 | mpcom |  |-  ( ( S ( t*rec ` R ) X /\ et ) -> ta ) | 
						
							| 23 | 22 | expcom |  |-  ( et -> ( S ( t*rec ` R ) X -> ta ) ) | 
						
							| 24 |  | breq |  |-  ( ( t* ` R ) = ( t*rec ` R ) -> ( S ( t* ` R ) X <-> S ( t*rec ` R ) X ) ) | 
						
							| 25 | 24 | imbi1d |  |-  ( ( t* ` R ) = ( t*rec ` R ) -> ( ( S ( t* ` R ) X -> ta ) <-> ( S ( t*rec ` R ) X -> ta ) ) ) | 
						
							| 26 | 23 25 | imbitrrid |  |-  ( ( t* ` R ) = ( t*rec ` R ) -> ( et -> ( S ( t* ` R ) X -> ta ) ) ) | 
						
							| 27 | 10 26 | mpcom |  |-  ( et -> ( S ( t* ` R ) X -> ta ) ) |