| Step | Hyp | Ref | Expression | 
						
							| 1 |  | relexpind.1 |  |-  ( et -> Rel R ) | 
						
							| 2 |  | relexpind.2 |  |-  ( et -> S e. V ) | 
						
							| 3 |  | relexpind.3 |  |-  ( et -> X e. W ) | 
						
							| 4 |  | relexpind.4 |  |-  ( i = S -> ( ph <-> ch ) ) | 
						
							| 5 |  | relexpind.5 |  |-  ( i = x -> ( ph <-> ps ) ) | 
						
							| 6 |  | relexpind.6 |  |-  ( i = j -> ( ph <-> th ) ) | 
						
							| 7 |  | relexpind.7 |  |-  ( x = X -> ( ps <-> ta ) ) | 
						
							| 8 |  | relexpind.8 |  |-  ( et -> ch ) | 
						
							| 9 |  | relexpind.9 |  |-  ( et -> ( j R x -> ( th -> ps ) ) ) | 
						
							| 10 |  | breq2 |  |-  ( x = X -> ( S ( R ^r n ) x <-> S ( R ^r n ) X ) ) | 
						
							| 11 | 10 | imbi1d |  |-  ( x = X -> ( ( S ( R ^r n ) x -> ta ) <-> ( S ( R ^r n ) X -> ta ) ) ) | 
						
							| 12 | 11 | imbi2d |  |-  ( x = X -> ( ( n e. NN0 -> ( S ( R ^r n ) x -> ta ) ) <-> ( n e. NN0 -> ( S ( R ^r n ) X -> ta ) ) ) ) | 
						
							| 13 | 12 | imbi2d |  |-  ( x = X -> ( ( et -> ( n e. NN0 -> ( S ( R ^r n ) x -> ta ) ) ) <-> ( et -> ( n e. NN0 -> ( S ( R ^r n ) X -> ta ) ) ) ) ) | 
						
							| 14 |  | imbi2 |  |-  ( ( ps <-> ta ) -> ( ( S ( R ^r n ) x -> ps ) <-> ( S ( R ^r n ) x -> ta ) ) ) | 
						
							| 15 | 14 | imbi2d |  |-  ( ( ps <-> ta ) -> ( ( n e. NN0 -> ( S ( R ^r n ) x -> ps ) ) <-> ( n e. NN0 -> ( S ( R ^r n ) x -> ta ) ) ) ) | 
						
							| 16 | 15 | imbi2d |  |-  ( ( ps <-> ta ) -> ( ( et -> ( n e. NN0 -> ( S ( R ^r n ) x -> ps ) ) ) <-> ( et -> ( n e. NN0 -> ( S ( R ^r n ) x -> ta ) ) ) ) ) | 
						
							| 17 | 16 | bibi1d |  |-  ( ( ps <-> ta ) -> ( ( ( et -> ( n e. NN0 -> ( S ( R ^r n ) x -> ps ) ) ) <-> ( et -> ( n e. NN0 -> ( S ( R ^r n ) X -> ta ) ) ) ) <-> ( ( et -> ( n e. NN0 -> ( S ( R ^r n ) x -> ta ) ) ) <-> ( et -> ( n e. NN0 -> ( S ( R ^r n ) X -> ta ) ) ) ) ) ) | 
						
							| 18 | 13 17 | imbitrrid |  |-  ( ( ps <-> ta ) -> ( x = X -> ( ( et -> ( n e. NN0 -> ( S ( R ^r n ) x -> ps ) ) ) <-> ( et -> ( n e. NN0 -> ( S ( R ^r n ) X -> ta ) ) ) ) ) ) | 
						
							| 19 | 7 18 | mpcom |  |-  ( x = X -> ( ( et -> ( n e. NN0 -> ( S ( R ^r n ) x -> ps ) ) ) <-> ( et -> ( n e. NN0 -> ( S ( R ^r n ) X -> ta ) ) ) ) ) | 
						
							| 20 | 1 2 4 5 6 8 9 | relexpindlem |  |-  ( et -> ( n e. NN0 -> ( S ( R ^r n ) x -> ps ) ) ) | 
						
							| 21 | 19 20 | vtoclg |  |-  ( X e. W -> ( et -> ( n e. NN0 -> ( S ( R ^r n ) X -> ta ) ) ) ) | 
						
							| 22 | 3 21 | mpcom |  |-  ( et -> ( n e. NN0 -> ( S ( R ^r n ) X -> ta ) ) ) |