| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dfrtrcl2.1 |
|- ( ph -> Rel R ) |
| 2 |
|
eqidd |
|- ( ( ph /\ R e. _V ) -> ( x e. _V |-> |^| { z | ( ( _I |` ( dom x u. ran x ) ) C_ z /\ x C_ z /\ ( z o. z ) C_ z ) } ) = ( x e. _V |-> |^| { z | ( ( _I |` ( dom x u. ran x ) ) C_ z /\ x C_ z /\ ( z o. z ) C_ z ) } ) ) |
| 3 |
|
dmeq |
|- ( x = R -> dom x = dom R ) |
| 4 |
|
rneq |
|- ( x = R -> ran x = ran R ) |
| 5 |
3 4
|
uneq12d |
|- ( x = R -> ( dom x u. ran x ) = ( dom R u. ran R ) ) |
| 6 |
5
|
reseq2d |
|- ( x = R -> ( _I |` ( dom x u. ran x ) ) = ( _I |` ( dom R u. ran R ) ) ) |
| 7 |
6
|
sseq1d |
|- ( x = R -> ( ( _I |` ( dom x u. ran x ) ) C_ z <-> ( _I |` ( dom R u. ran R ) ) C_ z ) ) |
| 8 |
|
id |
|- ( x = R -> x = R ) |
| 9 |
8
|
sseq1d |
|- ( x = R -> ( x C_ z <-> R C_ z ) ) |
| 10 |
7 9
|
3anbi12d |
|- ( x = R -> ( ( ( _I |` ( dom x u. ran x ) ) C_ z /\ x C_ z /\ ( z o. z ) C_ z ) <-> ( ( _I |` ( dom R u. ran R ) ) C_ z /\ R C_ z /\ ( z o. z ) C_ z ) ) ) |
| 11 |
10
|
abbidv |
|- ( x = R -> { z | ( ( _I |` ( dom x u. ran x ) ) C_ z /\ x C_ z /\ ( z o. z ) C_ z ) } = { z | ( ( _I |` ( dom R u. ran R ) ) C_ z /\ R C_ z /\ ( z o. z ) C_ z ) } ) |
| 12 |
11
|
inteqd |
|- ( x = R -> |^| { z | ( ( _I |` ( dom x u. ran x ) ) C_ z /\ x C_ z /\ ( z o. z ) C_ z ) } = |^| { z | ( ( _I |` ( dom R u. ran R ) ) C_ z /\ R C_ z /\ ( z o. z ) C_ z ) } ) |
| 13 |
12
|
adantl |
|- ( ( ( ph /\ R e. _V ) /\ x = R ) -> |^| { z | ( ( _I |` ( dom x u. ran x ) ) C_ z /\ x C_ z /\ ( z o. z ) C_ z ) } = |^| { z | ( ( _I |` ( dom R u. ran R ) ) C_ z /\ R C_ z /\ ( z o. z ) C_ z ) } ) |
| 14 |
|
simpr |
|- ( ( ph /\ R e. _V ) -> R e. _V ) |
| 15 |
|
relfld |
|- ( Rel R -> U. U. R = ( dom R u. ran R ) ) |
| 16 |
1 15
|
syl |
|- ( ph -> U. U. R = ( dom R u. ran R ) ) |
| 17 |
16
|
eqcomd |
|- ( ph -> ( dom R u. ran R ) = U. U. R ) |
| 18 |
17
|
adantr |
|- ( ( ph /\ R e. _V ) -> ( dom R u. ran R ) = U. U. R ) |
| 19 |
1
|
adantr |
|- ( ( ph /\ R e. _V ) -> Rel R ) |
| 20 |
19 14
|
rtrclreclem2 |
|- ( ( ph /\ R e. _V ) -> ( _I |` U. U. R ) C_ ( t*rec ` R ) ) |
| 21 |
|
id |
|- ( ( dom R u. ran R ) = U. U. R -> ( dom R u. ran R ) = U. U. R ) |
| 22 |
21
|
reseq2d |
|- ( ( dom R u. ran R ) = U. U. R -> ( _I |` ( dom R u. ran R ) ) = ( _I |` U. U. R ) ) |
| 23 |
22
|
sseq1d |
|- ( ( dom R u. ran R ) = U. U. R -> ( ( _I |` ( dom R u. ran R ) ) C_ ( t*rec ` R ) <-> ( _I |` U. U. R ) C_ ( t*rec ` R ) ) ) |
| 24 |
20 23
|
imbitrrid |
|- ( ( dom R u. ran R ) = U. U. R -> ( ( ph /\ R e. _V ) -> ( _I |` ( dom R u. ran R ) ) C_ ( t*rec ` R ) ) ) |
| 25 |
18 24
|
mpcom |
|- ( ( ph /\ R e. _V ) -> ( _I |` ( dom R u. ran R ) ) C_ ( t*rec ` R ) ) |
| 26 |
14
|
rtrclreclem1 |
|- ( ( ph /\ R e. _V ) -> R C_ ( t*rec ` R ) ) |
| 27 |
1
|
rtrclreclem3 |
|- ( ph -> ( ( t*rec ` R ) o. ( t*rec ` R ) ) C_ ( t*rec ` R ) ) |
| 28 |
27
|
adantr |
|- ( ( ph /\ R e. _V ) -> ( ( t*rec ` R ) o. ( t*rec ` R ) ) C_ ( t*rec ` R ) ) |
| 29 |
|
fvex |
|- ( t*rec ` R ) e. _V |
| 30 |
|
sseq2 |
|- ( z = ( t*rec ` R ) -> ( ( _I |` ( dom R u. ran R ) ) C_ z <-> ( _I |` ( dom R u. ran R ) ) C_ ( t*rec ` R ) ) ) |
| 31 |
|
sseq2 |
|- ( z = ( t*rec ` R ) -> ( R C_ z <-> R C_ ( t*rec ` R ) ) ) |
| 32 |
|
id |
|- ( z = ( t*rec ` R ) -> z = ( t*rec ` R ) ) |
| 33 |
32 32
|
coeq12d |
|- ( z = ( t*rec ` R ) -> ( z o. z ) = ( ( t*rec ` R ) o. ( t*rec ` R ) ) ) |
| 34 |
33 32
|
sseq12d |
|- ( z = ( t*rec ` R ) -> ( ( z o. z ) C_ z <-> ( ( t*rec ` R ) o. ( t*rec ` R ) ) C_ ( t*rec ` R ) ) ) |
| 35 |
30 31 34
|
3anbi123d |
|- ( z = ( t*rec ` R ) -> ( ( ( _I |` ( dom R u. ran R ) ) C_ z /\ R C_ z /\ ( z o. z ) C_ z ) <-> ( ( _I |` ( dom R u. ran R ) ) C_ ( t*rec ` R ) /\ R C_ ( t*rec ` R ) /\ ( ( t*rec ` R ) o. ( t*rec ` R ) ) C_ ( t*rec ` R ) ) ) ) |
| 36 |
35
|
a1i |
|- ( ph -> ( z = ( t*rec ` R ) -> ( ( ( _I |` ( dom R u. ran R ) ) C_ z /\ R C_ z /\ ( z o. z ) C_ z ) <-> ( ( _I |` ( dom R u. ran R ) ) C_ ( t*rec ` R ) /\ R C_ ( t*rec ` R ) /\ ( ( t*rec ` R ) o. ( t*rec ` R ) ) C_ ( t*rec ` R ) ) ) ) ) |
| 37 |
36
|
alrimiv |
|- ( ph -> A. z ( z = ( t*rec ` R ) -> ( ( ( _I |` ( dom R u. ran R ) ) C_ z /\ R C_ z /\ ( z o. z ) C_ z ) <-> ( ( _I |` ( dom R u. ran R ) ) C_ ( t*rec ` R ) /\ R C_ ( t*rec ` R ) /\ ( ( t*rec ` R ) o. ( t*rec ` R ) ) C_ ( t*rec ` R ) ) ) ) ) |
| 38 |
|
elabgt |
|- ( ( ( t*rec ` R ) e. _V /\ A. z ( z = ( t*rec ` R ) -> ( ( ( _I |` ( dom R u. ran R ) ) C_ z /\ R C_ z /\ ( z o. z ) C_ z ) <-> ( ( _I |` ( dom R u. ran R ) ) C_ ( t*rec ` R ) /\ R C_ ( t*rec ` R ) /\ ( ( t*rec ` R ) o. ( t*rec ` R ) ) C_ ( t*rec ` R ) ) ) ) ) -> ( ( t*rec ` R ) e. { z | ( ( _I |` ( dom R u. ran R ) ) C_ z /\ R C_ z /\ ( z o. z ) C_ z ) } <-> ( ( _I |` ( dom R u. ran R ) ) C_ ( t*rec ` R ) /\ R C_ ( t*rec ` R ) /\ ( ( t*rec ` R ) o. ( t*rec ` R ) ) C_ ( t*rec ` R ) ) ) ) |
| 39 |
29 37 38
|
sylancr |
|- ( ph -> ( ( t*rec ` R ) e. { z | ( ( _I |` ( dom R u. ran R ) ) C_ z /\ R C_ z /\ ( z o. z ) C_ z ) } <-> ( ( _I |` ( dom R u. ran R ) ) C_ ( t*rec ` R ) /\ R C_ ( t*rec ` R ) /\ ( ( t*rec ` R ) o. ( t*rec ` R ) ) C_ ( t*rec ` R ) ) ) ) |
| 40 |
39
|
adantr |
|- ( ( ph /\ R e. _V ) -> ( ( t*rec ` R ) e. { z | ( ( _I |` ( dom R u. ran R ) ) C_ z /\ R C_ z /\ ( z o. z ) C_ z ) } <-> ( ( _I |` ( dom R u. ran R ) ) C_ ( t*rec ` R ) /\ R C_ ( t*rec ` R ) /\ ( ( t*rec ` R ) o. ( t*rec ` R ) ) C_ ( t*rec ` R ) ) ) ) |
| 41 |
25 26 28 40
|
mpbir3and |
|- ( ( ph /\ R e. _V ) -> ( t*rec ` R ) e. { z | ( ( _I |` ( dom R u. ran R ) ) C_ z /\ R C_ z /\ ( z o. z ) C_ z ) } ) |
| 42 |
41
|
ne0d |
|- ( ( ph /\ R e. _V ) -> { z | ( ( _I |` ( dom R u. ran R ) ) C_ z /\ R C_ z /\ ( z o. z ) C_ z ) } =/= (/) ) |
| 43 |
|
intex |
|- ( { z | ( ( _I |` ( dom R u. ran R ) ) C_ z /\ R C_ z /\ ( z o. z ) C_ z ) } =/= (/) <-> |^| { z | ( ( _I |` ( dom R u. ran R ) ) C_ z /\ R C_ z /\ ( z o. z ) C_ z ) } e. _V ) |
| 44 |
42 43
|
sylib |
|- ( ( ph /\ R e. _V ) -> |^| { z | ( ( _I |` ( dom R u. ran R ) ) C_ z /\ R C_ z /\ ( z o. z ) C_ z ) } e. _V ) |
| 45 |
2 13 14 44
|
fvmptd |
|- ( ( ph /\ R e. _V ) -> ( ( x e. _V |-> |^| { z | ( ( _I |` ( dom x u. ran x ) ) C_ z /\ x C_ z /\ ( z o. z ) C_ z ) } ) ` R ) = |^| { z | ( ( _I |` ( dom R u. ran R ) ) C_ z /\ R C_ z /\ ( z o. z ) C_ z ) } ) |
| 46 |
|
intss1 |
|- ( ( t*rec ` R ) e. { z | ( ( _I |` ( dom R u. ran R ) ) C_ z /\ R C_ z /\ ( z o. z ) C_ z ) } -> |^| { z | ( ( _I |` ( dom R u. ran R ) ) C_ z /\ R C_ z /\ ( z o. z ) C_ z ) } C_ ( t*rec ` R ) ) |
| 47 |
41 46
|
syl |
|- ( ( ph /\ R e. _V ) -> |^| { z | ( ( _I |` ( dom R u. ran R ) ) C_ z /\ R C_ z /\ ( z o. z ) C_ z ) } C_ ( t*rec ` R ) ) |
| 48 |
|
vex |
|- s e. _V |
| 49 |
|
sseq2 |
|- ( z = s -> ( ( _I |` ( dom R u. ran R ) ) C_ z <-> ( _I |` ( dom R u. ran R ) ) C_ s ) ) |
| 50 |
|
sseq2 |
|- ( z = s -> ( R C_ z <-> R C_ s ) ) |
| 51 |
|
id |
|- ( z = s -> z = s ) |
| 52 |
51 51
|
coeq12d |
|- ( z = s -> ( z o. z ) = ( s o. s ) ) |
| 53 |
52 51
|
sseq12d |
|- ( z = s -> ( ( z o. z ) C_ z <-> ( s o. s ) C_ s ) ) |
| 54 |
49 50 53
|
3anbi123d |
|- ( z = s -> ( ( ( _I |` ( dom R u. ran R ) ) C_ z /\ R C_ z /\ ( z o. z ) C_ z ) <-> ( ( _I |` ( dom R u. ran R ) ) C_ s /\ R C_ s /\ ( s o. s ) C_ s ) ) ) |
| 55 |
48 54
|
elab |
|- ( s e. { z | ( ( _I |` ( dom R u. ran R ) ) C_ z /\ R C_ z /\ ( z o. z ) C_ z ) } <-> ( ( _I |` ( dom R u. ran R ) ) C_ s /\ R C_ s /\ ( s o. s ) C_ s ) ) |
| 56 |
1
|
rtrclreclem4 |
|- ( ph -> A. s ( ( ( _I |` ( dom R u. ran R ) ) C_ s /\ R C_ s /\ ( s o. s ) C_ s ) -> ( t*rec ` R ) C_ s ) ) |
| 57 |
56
|
19.21bi |
|- ( ph -> ( ( ( _I |` ( dom R u. ran R ) ) C_ s /\ R C_ s /\ ( s o. s ) C_ s ) -> ( t*rec ` R ) C_ s ) ) |
| 58 |
55 57
|
biimtrid |
|- ( ph -> ( s e. { z | ( ( _I |` ( dom R u. ran R ) ) C_ z /\ R C_ z /\ ( z o. z ) C_ z ) } -> ( t*rec ` R ) C_ s ) ) |
| 59 |
58
|
ralrimiv |
|- ( ph -> A. s e. { z | ( ( _I |` ( dom R u. ran R ) ) C_ z /\ R C_ z /\ ( z o. z ) C_ z ) } ( t*rec ` R ) C_ s ) |
| 60 |
|
ssint |
|- ( ( t*rec ` R ) C_ |^| { z | ( ( _I |` ( dom R u. ran R ) ) C_ z /\ R C_ z /\ ( z o. z ) C_ z ) } <-> A. s e. { z | ( ( _I |` ( dom R u. ran R ) ) C_ z /\ R C_ z /\ ( z o. z ) C_ z ) } ( t*rec ` R ) C_ s ) |
| 61 |
59 60
|
sylibr |
|- ( ph -> ( t*rec ` R ) C_ |^| { z | ( ( _I |` ( dom R u. ran R ) ) C_ z /\ R C_ z /\ ( z o. z ) C_ z ) } ) |
| 62 |
61
|
adantr |
|- ( ( ph /\ R e. _V ) -> ( t*rec ` R ) C_ |^| { z | ( ( _I |` ( dom R u. ran R ) ) C_ z /\ R C_ z /\ ( z o. z ) C_ z ) } ) |
| 63 |
47 62
|
eqssd |
|- ( ( ph /\ R e. _V ) -> |^| { z | ( ( _I |` ( dom R u. ran R ) ) C_ z /\ R C_ z /\ ( z o. z ) C_ z ) } = ( t*rec ` R ) ) |
| 64 |
45 63
|
eqtrd |
|- ( ( ph /\ R e. _V ) -> ( ( x e. _V |-> |^| { z | ( ( _I |` ( dom x u. ran x ) ) C_ z /\ x C_ z /\ ( z o. z ) C_ z ) } ) ` R ) = ( t*rec ` R ) ) |
| 65 |
|
df-rtrcl |
|- t* = ( x e. _V |-> |^| { z | ( ( _I |` ( dom x u. ran x ) ) C_ z /\ x C_ z /\ ( z o. z ) C_ z ) } ) |
| 66 |
|
fveq1 |
|- ( t* = ( x e. _V |-> |^| { z | ( ( _I |` ( dom x u. ran x ) ) C_ z /\ x C_ z /\ ( z o. z ) C_ z ) } ) -> ( t* ` R ) = ( ( x e. _V |-> |^| { z | ( ( _I |` ( dom x u. ran x ) ) C_ z /\ x C_ z /\ ( z o. z ) C_ z ) } ) ` R ) ) |
| 67 |
66
|
eqeq1d |
|- ( t* = ( x e. _V |-> |^| { z | ( ( _I |` ( dom x u. ran x ) ) C_ z /\ x C_ z /\ ( z o. z ) C_ z ) } ) -> ( ( t* ` R ) = ( t*rec ` R ) <-> ( ( x e. _V |-> |^| { z | ( ( _I |` ( dom x u. ran x ) ) C_ z /\ x C_ z /\ ( z o. z ) C_ z ) } ) ` R ) = ( t*rec ` R ) ) ) |
| 68 |
67
|
imbi2d |
|- ( t* = ( x e. _V |-> |^| { z | ( ( _I |` ( dom x u. ran x ) ) C_ z /\ x C_ z /\ ( z o. z ) C_ z ) } ) -> ( ( ( ph /\ R e. _V ) -> ( t* ` R ) = ( t*rec ` R ) ) <-> ( ( ph /\ R e. _V ) -> ( ( x e. _V |-> |^| { z | ( ( _I |` ( dom x u. ran x ) ) C_ z /\ x C_ z /\ ( z o. z ) C_ z ) } ) ` R ) = ( t*rec ` R ) ) ) ) |
| 69 |
65 68
|
ax-mp |
|- ( ( ( ph /\ R e. _V ) -> ( t* ` R ) = ( t*rec ` R ) ) <-> ( ( ph /\ R e. _V ) -> ( ( x e. _V |-> |^| { z | ( ( _I |` ( dom x u. ran x ) ) C_ z /\ x C_ z /\ ( z o. z ) C_ z ) } ) ` R ) = ( t*rec ` R ) ) ) |
| 70 |
64 69
|
mpbir |
|- ( ( ph /\ R e. _V ) -> ( t* ` R ) = ( t*rec ` R ) ) |
| 71 |
70
|
ex |
|- ( ph -> ( R e. _V -> ( t* ` R ) = ( t*rec ` R ) ) ) |
| 72 |
|
fvprc |
|- ( -. R e. _V -> ( t* ` R ) = (/) ) |
| 73 |
|
fvprc |
|- ( -. R e. _V -> ( t*rec ` R ) = (/) ) |
| 74 |
73
|
eqcomd |
|- ( -. R e. _V -> (/) = ( t*rec ` R ) ) |
| 75 |
72 74
|
eqtrd |
|- ( -. R e. _V -> ( t* ` R ) = ( t*rec ` R ) ) |
| 76 |
71 75
|
pm2.61d1 |
|- ( ph -> ( t* ` R ) = ( t*rec ` R ) ) |