| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rtrclreclem.1 |
|- ( ph -> Rel R ) |
| 2 |
|
df-co |
|- ( ( t*rec ` R ) o. ( t*rec ` R ) ) = { <. e , g >. | E. f ( e ( t*rec ` R ) f /\ f ( t*rec ` R ) g ) } |
| 3 |
|
elopab |
|- ( d e. { <. e , g >. | E. f ( e ( t*rec ` R ) f /\ f ( t*rec ` R ) g ) } <-> E. e E. g ( d = <. e , g >. /\ E. f ( e ( t*rec ` R ) f /\ f ( t*rec ` R ) g ) ) ) |
| 4 |
|
eqeq1 |
|- ( d = <. e , g >. -> ( d = <. e , g >. <-> <. e , g >. = <. e , g >. ) ) |
| 5 |
4
|
anbi1d |
|- ( d = <. e , g >. -> ( ( d = <. e , g >. /\ ( E. f ( e ( t*rec ` R ) f /\ f ( t*rec ` R ) g ) /\ ph ) ) <-> ( <. e , g >. = <. e , g >. /\ ( E. f ( e ( t*rec ` R ) f /\ f ( t*rec ` R ) g ) /\ ph ) ) ) ) |
| 6 |
|
simprr |
|- ( ( <. e , g >. = <. e , g >. /\ ( E. f ( e ( t*rec ` R ) f /\ f ( t*rec ` R ) g ) /\ ph ) ) -> ph ) |
| 7 |
|
simprl |
|- ( ( <. e , g >. = <. e , g >. /\ ( E. f ( e ( t*rec ` R ) f /\ f ( t*rec ` R ) g ) /\ ph ) ) -> E. f ( e ( t*rec ` R ) f /\ f ( t*rec ` R ) g ) ) |
| 8 |
|
simpl |
|- ( ( e ( t*rec ` R ) f /\ ( f ( t*rec ` R ) g /\ ph ) ) -> e ( t*rec ` R ) f ) |
| 9 |
|
simprr |
|- ( ( e ( t*rec ` R ) f /\ ( f ( t*rec ` R ) g /\ ph ) ) -> ph ) |
| 10 |
1
|
dfrtrclrec2 |
|- ( ph -> ( e ( t*rec ` R ) f <-> E. n e. NN0 e ( R ^r n ) f ) ) |
| 11 |
9 10
|
syl |
|- ( ( e ( t*rec ` R ) f /\ ( f ( t*rec ` R ) g /\ ph ) ) -> ( e ( t*rec ` R ) f <-> E. n e. NN0 e ( R ^r n ) f ) ) |
| 12 |
8 11
|
mpbid |
|- ( ( e ( t*rec ` R ) f /\ ( f ( t*rec ` R ) g /\ ph ) ) -> E. n e. NN0 e ( R ^r n ) f ) |
| 13 |
|
simprl |
|- ( ( e ( t*rec ` R ) f /\ ( f ( t*rec ` R ) g /\ ( ph /\ ( e ( R ^r n ) f /\ n e. NN0 ) ) ) ) -> f ( t*rec ` R ) g ) |
| 14 |
|
simprrl |
|- ( ( e ( t*rec ` R ) f /\ ( f ( t*rec ` R ) g /\ ( ph /\ ( e ( R ^r n ) f /\ n e. NN0 ) ) ) ) -> ph ) |
| 15 |
1
|
dfrtrclrec2 |
|- ( ph -> ( f ( t*rec ` R ) g <-> E. m e. NN0 f ( R ^r m ) g ) ) |
| 16 |
14 15
|
syl |
|- ( ( e ( t*rec ` R ) f /\ ( f ( t*rec ` R ) g /\ ( ph /\ ( e ( R ^r n ) f /\ n e. NN0 ) ) ) ) -> ( f ( t*rec ` R ) g <-> E. m e. NN0 f ( R ^r m ) g ) ) |
| 17 |
13 16
|
mpbid |
|- ( ( e ( t*rec ` R ) f /\ ( f ( t*rec ` R ) g /\ ( ph /\ ( e ( R ^r n ) f /\ n e. NN0 ) ) ) ) -> E. m e. NN0 f ( R ^r m ) g ) |
| 18 |
|
simprrl |
|- ( ( ph /\ ( e ( R ^r n ) f /\ ( n e. NN0 /\ ( f ( R ^r m ) g /\ m e. NN0 ) ) ) ) -> n e. NN0 ) |
| 19 |
18
|
adantl |
|- ( ( f ( t*rec ` R ) g /\ ( ph /\ ( e ( R ^r n ) f /\ ( n e. NN0 /\ ( f ( R ^r m ) g /\ m e. NN0 ) ) ) ) ) -> n e. NN0 ) |
| 20 |
19
|
adantl |
|- ( ( e ( t*rec ` R ) f /\ ( f ( t*rec ` R ) g /\ ( ph /\ ( e ( R ^r n ) f /\ ( n e. NN0 /\ ( f ( R ^r m ) g /\ m e. NN0 ) ) ) ) ) ) -> n e. NN0 ) |
| 21 |
|
simprr |
|- ( ( n e. NN0 /\ ( f ( R ^r m ) g /\ m e. NN0 ) ) -> m e. NN0 ) |
| 22 |
21
|
adantl |
|- ( ( e ( R ^r n ) f /\ ( n e. NN0 /\ ( f ( R ^r m ) g /\ m e. NN0 ) ) ) -> m e. NN0 ) |
| 23 |
22
|
adantl |
|- ( ( ph /\ ( e ( R ^r n ) f /\ ( n e. NN0 /\ ( f ( R ^r m ) g /\ m e. NN0 ) ) ) ) -> m e. NN0 ) |
| 24 |
23
|
adantl |
|- ( ( f ( t*rec ` R ) g /\ ( ph /\ ( e ( R ^r n ) f /\ ( n e. NN0 /\ ( f ( R ^r m ) g /\ m e. NN0 ) ) ) ) ) -> m e. NN0 ) |
| 25 |
24
|
adantl |
|- ( ( e ( t*rec ` R ) f /\ ( f ( t*rec ` R ) g /\ ( ph /\ ( e ( R ^r n ) f /\ ( n e. NN0 /\ ( f ( R ^r m ) g /\ m e. NN0 ) ) ) ) ) ) -> m e. NN0 ) |
| 26 |
20 25
|
nn0addcld |
|- ( ( e ( t*rec ` R ) f /\ ( f ( t*rec ` R ) g /\ ( ph /\ ( e ( R ^r n ) f /\ ( n e. NN0 /\ ( f ( R ^r m ) g /\ m e. NN0 ) ) ) ) ) ) -> ( n + m ) e. NN0 ) |
| 27 |
20
|
adantl |
|- ( ( ( n + m ) e. NN0 /\ ( e ( t*rec ` R ) f /\ ( f ( t*rec ` R ) g /\ ( ph /\ ( e ( R ^r n ) f /\ ( n e. NN0 /\ ( f ( R ^r m ) g /\ m e. NN0 ) ) ) ) ) ) ) -> n e. NN0 ) |
| 28 |
27
|
nn0cnd |
|- ( ( ( n + m ) e. NN0 /\ ( e ( t*rec ` R ) f /\ ( f ( t*rec ` R ) g /\ ( ph /\ ( e ( R ^r n ) f /\ ( n e. NN0 /\ ( f ( R ^r m ) g /\ m e. NN0 ) ) ) ) ) ) ) -> n e. CC ) |
| 29 |
25
|
adantl |
|- ( ( ( n + m ) e. NN0 /\ ( e ( t*rec ` R ) f /\ ( f ( t*rec ` R ) g /\ ( ph /\ ( e ( R ^r n ) f /\ ( n e. NN0 /\ ( f ( R ^r m ) g /\ m e. NN0 ) ) ) ) ) ) ) -> m e. NN0 ) |
| 30 |
29
|
nn0cnd |
|- ( ( ( n + m ) e. NN0 /\ ( e ( t*rec ` R ) f /\ ( f ( t*rec ` R ) g /\ ( ph /\ ( e ( R ^r n ) f /\ ( n e. NN0 /\ ( f ( R ^r m ) g /\ m e. NN0 ) ) ) ) ) ) ) -> m e. CC ) |
| 31 |
28 30
|
addcomd |
|- ( ( ( n + m ) e. NN0 /\ ( e ( t*rec ` R ) f /\ ( f ( t*rec ` R ) g /\ ( ph /\ ( e ( R ^r n ) f /\ ( n e. NN0 /\ ( f ( R ^r m ) g /\ m e. NN0 ) ) ) ) ) ) ) -> ( n + m ) = ( m + n ) ) |
| 32 |
|
eleq1 |
|- ( ( n + m ) = ( m + n ) -> ( ( n + m ) e. NN0 <-> ( m + n ) e. NN0 ) ) |
| 33 |
32
|
anbi1d |
|- ( ( n + m ) = ( m + n ) -> ( ( ( n + m ) e. NN0 /\ ( e ( t*rec ` R ) f /\ ( f ( t*rec ` R ) g /\ ( ph /\ ( e ( R ^r n ) f /\ ( n e. NN0 /\ ( f ( R ^r m ) g /\ m e. NN0 ) ) ) ) ) ) ) <-> ( ( m + n ) e. NN0 /\ ( e ( t*rec ` R ) f /\ ( f ( t*rec ` R ) g /\ ( ph /\ ( e ( R ^r n ) f /\ ( n e. NN0 /\ ( f ( R ^r m ) g /\ m e. NN0 ) ) ) ) ) ) ) ) ) |
| 34 |
|
simprrl |
|- ( ( e ( t*rec ` R ) f /\ ( f ( t*rec ` R ) g /\ ( ph /\ ( e ( R ^r n ) f /\ ( n e. NN0 /\ ( f ( R ^r m ) g /\ m e. NN0 ) ) ) ) ) ) -> ph ) |
| 35 |
34
|
adantl |
|- ( ( ( m + n ) e. NN0 /\ ( e ( t*rec ` R ) f /\ ( f ( t*rec ` R ) g /\ ( ph /\ ( e ( R ^r n ) f /\ ( n e. NN0 /\ ( f ( R ^r m ) g /\ m e. NN0 ) ) ) ) ) ) ) -> ph ) |
| 36 |
35 1
|
syl |
|- ( ( ( m + n ) e. NN0 /\ ( e ( t*rec ` R ) f /\ ( f ( t*rec ` R ) g /\ ( ph /\ ( e ( R ^r n ) f /\ ( n e. NN0 /\ ( f ( R ^r m ) g /\ m e. NN0 ) ) ) ) ) ) ) -> Rel R ) |
| 37 |
25
|
adantl |
|- ( ( ( m + n ) e. NN0 /\ ( e ( t*rec ` R ) f /\ ( f ( t*rec ` R ) g /\ ( ph /\ ( e ( R ^r n ) f /\ ( n e. NN0 /\ ( f ( R ^r m ) g /\ m e. NN0 ) ) ) ) ) ) ) -> m e. NN0 ) |
| 38 |
20
|
adantl |
|- ( ( ( m + n ) e. NN0 /\ ( e ( t*rec ` R ) f /\ ( f ( t*rec ` R ) g /\ ( ph /\ ( e ( R ^r n ) f /\ ( n e. NN0 /\ ( f ( R ^r m ) g /\ m e. NN0 ) ) ) ) ) ) ) -> n e. NN0 ) |
| 39 |
36 37 38
|
relexpaddd |
|- ( ( ( m + n ) e. NN0 /\ ( e ( t*rec ` R ) f /\ ( f ( t*rec ` R ) g /\ ( ph /\ ( e ( R ^r n ) f /\ ( n e. NN0 /\ ( f ( R ^r m ) g /\ m e. NN0 ) ) ) ) ) ) ) -> ( ( R ^r m ) o. ( R ^r n ) ) = ( R ^r ( m + n ) ) ) |
| 40 |
|
oveq2 |
|- ( ( n + m ) = ( m + n ) -> ( R ^r ( n + m ) ) = ( R ^r ( m + n ) ) ) |
| 41 |
40
|
eqeq2d |
|- ( ( n + m ) = ( m + n ) -> ( ( ( R ^r m ) o. ( R ^r n ) ) = ( R ^r ( n + m ) ) <-> ( ( R ^r m ) o. ( R ^r n ) ) = ( R ^r ( m + n ) ) ) ) |
| 42 |
39 41
|
imbitrrid |
|- ( ( n + m ) = ( m + n ) -> ( ( ( m + n ) e. NN0 /\ ( e ( t*rec ` R ) f /\ ( f ( t*rec ` R ) g /\ ( ph /\ ( e ( R ^r n ) f /\ ( n e. NN0 /\ ( f ( R ^r m ) g /\ m e. NN0 ) ) ) ) ) ) ) -> ( ( R ^r m ) o. ( R ^r n ) ) = ( R ^r ( n + m ) ) ) ) |
| 43 |
33 42
|
sylbid |
|- ( ( n + m ) = ( m + n ) -> ( ( ( n + m ) e. NN0 /\ ( e ( t*rec ` R ) f /\ ( f ( t*rec ` R ) g /\ ( ph /\ ( e ( R ^r n ) f /\ ( n e. NN0 /\ ( f ( R ^r m ) g /\ m e. NN0 ) ) ) ) ) ) ) -> ( ( R ^r m ) o. ( R ^r n ) ) = ( R ^r ( n + m ) ) ) ) |
| 44 |
31 43
|
mpcom |
|- ( ( ( n + m ) e. NN0 /\ ( e ( t*rec ` R ) f /\ ( f ( t*rec ` R ) g /\ ( ph /\ ( e ( R ^r n ) f /\ ( n e. NN0 /\ ( f ( R ^r m ) g /\ m e. NN0 ) ) ) ) ) ) ) -> ( ( R ^r m ) o. ( R ^r n ) ) = ( R ^r ( n + m ) ) ) |
| 45 |
|
simprrl |
|- ( ( f ( t*rec ` R ) g /\ ( ph /\ ( e ( R ^r n ) f /\ ( n e. NN0 /\ ( f ( R ^r m ) g /\ m e. NN0 ) ) ) ) ) -> e ( R ^r n ) f ) |
| 46 |
45
|
adantl |
|- ( ( e ( t*rec ` R ) f /\ ( f ( t*rec ` R ) g /\ ( ph /\ ( e ( R ^r n ) f /\ ( n e. NN0 /\ ( f ( R ^r m ) g /\ m e. NN0 ) ) ) ) ) ) -> e ( R ^r n ) f ) |
| 47 |
|
simprrl |
|- ( ( e ( R ^r n ) f /\ ( n e. NN0 /\ ( f ( R ^r m ) g /\ m e. NN0 ) ) ) -> f ( R ^r m ) g ) |
| 48 |
47
|
adantl |
|- ( ( ph /\ ( e ( R ^r n ) f /\ ( n e. NN0 /\ ( f ( R ^r m ) g /\ m e. NN0 ) ) ) ) -> f ( R ^r m ) g ) |
| 49 |
48
|
adantl |
|- ( ( f ( t*rec ` R ) g /\ ( ph /\ ( e ( R ^r n ) f /\ ( n e. NN0 /\ ( f ( R ^r m ) g /\ m e. NN0 ) ) ) ) ) -> f ( R ^r m ) g ) |
| 50 |
49
|
adantl |
|- ( ( e ( t*rec ` R ) f /\ ( f ( t*rec ` R ) g /\ ( ph /\ ( e ( R ^r n ) f /\ ( n e. NN0 /\ ( f ( R ^r m ) g /\ m e. NN0 ) ) ) ) ) ) -> f ( R ^r m ) g ) |
| 51 |
50
|
adantl |
|- ( ( ( n + m ) e. NN0 /\ ( e ( t*rec ` R ) f /\ ( f ( t*rec ` R ) g /\ ( ph /\ ( e ( R ^r n ) f /\ ( n e. NN0 /\ ( f ( R ^r m ) g /\ m e. NN0 ) ) ) ) ) ) ) -> f ( R ^r m ) g ) |
| 52 |
|
vex |
|- f e. _V |
| 53 |
|
breq2 |
|- ( h = f -> ( e ( R ^r n ) h <-> e ( R ^r n ) f ) ) |
| 54 |
|
breq1 |
|- ( h = f -> ( h ( R ^r m ) g <-> f ( R ^r m ) g ) ) |
| 55 |
53 54
|
anbi12d |
|- ( h = f -> ( ( e ( R ^r n ) h /\ h ( R ^r m ) g ) <-> ( e ( R ^r n ) f /\ f ( R ^r m ) g ) ) ) |
| 56 |
52 55
|
spcev |
|- ( ( e ( R ^r n ) f /\ f ( R ^r m ) g ) -> E. h ( e ( R ^r n ) h /\ h ( R ^r m ) g ) ) |
| 57 |
46 51 56
|
syl2an2 |
|- ( ( ( n + m ) e. NN0 /\ ( e ( t*rec ` R ) f /\ ( f ( t*rec ` R ) g /\ ( ph /\ ( e ( R ^r n ) f /\ ( n e. NN0 /\ ( f ( R ^r m ) g /\ m e. NN0 ) ) ) ) ) ) ) -> E. h ( e ( R ^r n ) h /\ h ( R ^r m ) g ) ) |
| 58 |
|
vex |
|- e e. _V |
| 59 |
|
vex |
|- g e. _V |
| 60 |
58 59
|
brco |
|- ( e ( ( R ^r m ) o. ( R ^r n ) ) g <-> E. h ( e ( R ^r n ) h /\ h ( R ^r m ) g ) ) |
| 61 |
57 60
|
sylibr |
|- ( ( ( n + m ) e. NN0 /\ ( e ( t*rec ` R ) f /\ ( f ( t*rec ` R ) g /\ ( ph /\ ( e ( R ^r n ) f /\ ( n e. NN0 /\ ( f ( R ^r m ) g /\ m e. NN0 ) ) ) ) ) ) ) -> e ( ( R ^r m ) o. ( R ^r n ) ) g ) |
| 62 |
44 61
|
breqdi |
|- ( ( ( n + m ) e. NN0 /\ ( e ( t*rec ` R ) f /\ ( f ( t*rec ` R ) g /\ ( ph /\ ( e ( R ^r n ) f /\ ( n e. NN0 /\ ( f ( R ^r m ) g /\ m e. NN0 ) ) ) ) ) ) ) -> e ( R ^r ( n + m ) ) g ) |
| 63 |
|
oveq2 |
|- ( i = ( n + m ) -> ( R ^r i ) = ( R ^r ( n + m ) ) ) |
| 64 |
63
|
breqd |
|- ( i = ( n + m ) -> ( e ( R ^r i ) g <-> e ( R ^r ( n + m ) ) g ) ) |
| 65 |
64
|
rspcev |
|- ( ( ( n + m ) e. NN0 /\ e ( R ^r ( n + m ) ) g ) -> E. i e. NN0 e ( R ^r i ) g ) |
| 66 |
62 65
|
syldan |
|- ( ( ( n + m ) e. NN0 /\ ( e ( t*rec ` R ) f /\ ( f ( t*rec ` R ) g /\ ( ph /\ ( e ( R ^r n ) f /\ ( n e. NN0 /\ ( f ( R ^r m ) g /\ m e. NN0 ) ) ) ) ) ) ) -> E. i e. NN0 e ( R ^r i ) g ) |
| 67 |
26 66
|
mpancom |
|- ( ( e ( t*rec ` R ) f /\ ( f ( t*rec ` R ) g /\ ( ph /\ ( e ( R ^r n ) f /\ ( n e. NN0 /\ ( f ( R ^r m ) g /\ m e. NN0 ) ) ) ) ) ) -> E. i e. NN0 e ( R ^r i ) g ) |
| 68 |
|
df-br |
|- ( e ( t*rec ` R ) g <-> <. e , g >. e. ( t*rec ` R ) ) |
| 69 |
34 1
|
syl |
|- ( ( e ( t*rec ` R ) f /\ ( f ( t*rec ` R ) g /\ ( ph /\ ( e ( R ^r n ) f /\ ( n e. NN0 /\ ( f ( R ^r m ) g /\ m e. NN0 ) ) ) ) ) ) -> Rel R ) |
| 70 |
69
|
dfrtrclrec2 |
|- ( ( e ( t*rec ` R ) f /\ ( f ( t*rec ` R ) g /\ ( ph /\ ( e ( R ^r n ) f /\ ( n e. NN0 /\ ( f ( R ^r m ) g /\ m e. NN0 ) ) ) ) ) ) -> ( e ( t*rec ` R ) g <-> E. i e. NN0 e ( R ^r i ) g ) ) |
| 71 |
68 70
|
bitr3id |
|- ( ( e ( t*rec ` R ) f /\ ( f ( t*rec ` R ) g /\ ( ph /\ ( e ( R ^r n ) f /\ ( n e. NN0 /\ ( f ( R ^r m ) g /\ m e. NN0 ) ) ) ) ) ) -> ( <. e , g >. e. ( t*rec ` R ) <-> E. i e. NN0 e ( R ^r i ) g ) ) |
| 72 |
67 71
|
mpbird |
|- ( ( e ( t*rec ` R ) f /\ ( f ( t*rec ` R ) g /\ ( ph /\ ( e ( R ^r n ) f /\ ( n e. NN0 /\ ( f ( R ^r m ) g /\ m e. NN0 ) ) ) ) ) ) -> <. e , g >. e. ( t*rec ` R ) ) |
| 73 |
72
|
expcom |
|- ( ( f ( t*rec ` R ) g /\ ( ph /\ ( e ( R ^r n ) f /\ ( n e. NN0 /\ ( f ( R ^r m ) g /\ m e. NN0 ) ) ) ) ) -> ( e ( t*rec ` R ) f -> <. e , g >. e. ( t*rec ` R ) ) ) |
| 74 |
73
|
expcom |
|- ( ( ph /\ ( e ( R ^r n ) f /\ ( n e. NN0 /\ ( f ( R ^r m ) g /\ m e. NN0 ) ) ) ) -> ( f ( t*rec ` R ) g -> ( e ( t*rec ` R ) f -> <. e , g >. e. ( t*rec ` R ) ) ) ) |
| 75 |
74
|
expcom |
|- ( ( e ( R ^r n ) f /\ ( n e. NN0 /\ ( f ( R ^r m ) g /\ m e. NN0 ) ) ) -> ( ph -> ( f ( t*rec ` R ) g -> ( e ( t*rec ` R ) f -> <. e , g >. e. ( t*rec ` R ) ) ) ) ) |
| 76 |
75
|
anassrs |
|- ( ( ( e ( R ^r n ) f /\ n e. NN0 ) /\ ( f ( R ^r m ) g /\ m e. NN0 ) ) -> ( ph -> ( f ( t*rec ` R ) g -> ( e ( t*rec ` R ) f -> <. e , g >. e. ( t*rec ` R ) ) ) ) ) |
| 77 |
76
|
impcom |
|- ( ( ph /\ ( ( e ( R ^r n ) f /\ n e. NN0 ) /\ ( f ( R ^r m ) g /\ m e. NN0 ) ) ) -> ( f ( t*rec ` R ) g -> ( e ( t*rec ` R ) f -> <. e , g >. e. ( t*rec ` R ) ) ) ) |
| 78 |
77
|
anassrs |
|- ( ( ( ph /\ ( e ( R ^r n ) f /\ n e. NN0 ) ) /\ ( f ( R ^r m ) g /\ m e. NN0 ) ) -> ( f ( t*rec ` R ) g -> ( e ( t*rec ` R ) f -> <. e , g >. e. ( t*rec ` R ) ) ) ) |
| 79 |
78
|
impcom |
|- ( ( f ( t*rec ` R ) g /\ ( ( ph /\ ( e ( R ^r n ) f /\ n e. NN0 ) ) /\ ( f ( R ^r m ) g /\ m e. NN0 ) ) ) -> ( e ( t*rec ` R ) f -> <. e , g >. e. ( t*rec ` R ) ) ) |
| 80 |
79
|
anassrs |
|- ( ( ( f ( t*rec ` R ) g /\ ( ph /\ ( e ( R ^r n ) f /\ n e. NN0 ) ) ) /\ ( f ( R ^r m ) g /\ m e. NN0 ) ) -> ( e ( t*rec ` R ) f -> <. e , g >. e. ( t*rec ` R ) ) ) |
| 81 |
80
|
impcom |
|- ( ( e ( t*rec ` R ) f /\ ( ( f ( t*rec ` R ) g /\ ( ph /\ ( e ( R ^r n ) f /\ n e. NN0 ) ) ) /\ ( f ( R ^r m ) g /\ m e. NN0 ) ) ) -> <. e , g >. e. ( t*rec ` R ) ) |
| 82 |
81
|
anassrs |
|- ( ( ( e ( t*rec ` R ) f /\ ( f ( t*rec ` R ) g /\ ( ph /\ ( e ( R ^r n ) f /\ n e. NN0 ) ) ) ) /\ ( f ( R ^r m ) g /\ m e. NN0 ) ) -> <. e , g >. e. ( t*rec ` R ) ) |
| 83 |
82
|
expcom |
|- ( ( f ( R ^r m ) g /\ m e. NN0 ) -> ( ( e ( t*rec ` R ) f /\ ( f ( t*rec ` R ) g /\ ( ph /\ ( e ( R ^r n ) f /\ n e. NN0 ) ) ) ) -> <. e , g >. e. ( t*rec ` R ) ) ) |
| 84 |
83
|
expcom |
|- ( m e. NN0 -> ( f ( R ^r m ) g -> ( ( e ( t*rec ` R ) f /\ ( f ( t*rec ` R ) g /\ ( ph /\ ( e ( R ^r n ) f /\ n e. NN0 ) ) ) ) -> <. e , g >. e. ( t*rec ` R ) ) ) ) |
| 85 |
84
|
rexlimiv |
|- ( E. m e. NN0 f ( R ^r m ) g -> ( ( e ( t*rec ` R ) f /\ ( f ( t*rec ` R ) g /\ ( ph /\ ( e ( R ^r n ) f /\ n e. NN0 ) ) ) ) -> <. e , g >. e. ( t*rec ` R ) ) ) |
| 86 |
17 85
|
mpcom |
|- ( ( e ( t*rec ` R ) f /\ ( f ( t*rec ` R ) g /\ ( ph /\ ( e ( R ^r n ) f /\ n e. NN0 ) ) ) ) -> <. e , g >. e. ( t*rec ` R ) ) |
| 87 |
86
|
expcom |
|- ( ( f ( t*rec ` R ) g /\ ( ph /\ ( e ( R ^r n ) f /\ n e. NN0 ) ) ) -> ( e ( t*rec ` R ) f -> <. e , g >. e. ( t*rec ` R ) ) ) |
| 88 |
87
|
anassrs |
|- ( ( ( f ( t*rec ` R ) g /\ ph ) /\ ( e ( R ^r n ) f /\ n e. NN0 ) ) -> ( e ( t*rec ` R ) f -> <. e , g >. e. ( t*rec ` R ) ) ) |
| 89 |
88
|
impcom |
|- ( ( e ( t*rec ` R ) f /\ ( ( f ( t*rec ` R ) g /\ ph ) /\ ( e ( R ^r n ) f /\ n e. NN0 ) ) ) -> <. e , g >. e. ( t*rec ` R ) ) |
| 90 |
89
|
anassrs |
|- ( ( ( e ( t*rec ` R ) f /\ ( f ( t*rec ` R ) g /\ ph ) ) /\ ( e ( R ^r n ) f /\ n e. NN0 ) ) -> <. e , g >. e. ( t*rec ` R ) ) |
| 91 |
90
|
expcom |
|- ( ( e ( R ^r n ) f /\ n e. NN0 ) -> ( ( e ( t*rec ` R ) f /\ ( f ( t*rec ` R ) g /\ ph ) ) -> <. e , g >. e. ( t*rec ` R ) ) ) |
| 92 |
91
|
expcom |
|- ( n e. NN0 -> ( e ( R ^r n ) f -> ( ( e ( t*rec ` R ) f /\ ( f ( t*rec ` R ) g /\ ph ) ) -> <. e , g >. e. ( t*rec ` R ) ) ) ) |
| 93 |
92
|
rexlimiv |
|- ( E. n e. NN0 e ( R ^r n ) f -> ( ( e ( t*rec ` R ) f /\ ( f ( t*rec ` R ) g /\ ph ) ) -> <. e , g >. e. ( t*rec ` R ) ) ) |
| 94 |
12 93
|
mpcom |
|- ( ( e ( t*rec ` R ) f /\ ( f ( t*rec ` R ) g /\ ph ) ) -> <. e , g >. e. ( t*rec ` R ) ) |
| 95 |
94
|
anassrs |
|- ( ( ( e ( t*rec ` R ) f /\ f ( t*rec ` R ) g ) /\ ph ) -> <. e , g >. e. ( t*rec ` R ) ) |
| 96 |
95
|
expcom |
|- ( ph -> ( ( e ( t*rec ` R ) f /\ f ( t*rec ` R ) g ) -> <. e , g >. e. ( t*rec ` R ) ) ) |
| 97 |
96
|
exlimdv |
|- ( ph -> ( E. f ( e ( t*rec ` R ) f /\ f ( t*rec ` R ) g ) -> <. e , g >. e. ( t*rec ` R ) ) ) |
| 98 |
6 7 97
|
sylc |
|- ( ( <. e , g >. = <. e , g >. /\ ( E. f ( e ( t*rec ` R ) f /\ f ( t*rec ` R ) g ) /\ ph ) ) -> <. e , g >. e. ( t*rec ` R ) ) |
| 99 |
|
eleq1 |
|- ( d = <. e , g >. -> ( d e. ( t*rec ` R ) <-> <. e , g >. e. ( t*rec ` R ) ) ) |
| 100 |
98 99
|
imbitrrid |
|- ( d = <. e , g >. -> ( ( <. e , g >. = <. e , g >. /\ ( E. f ( e ( t*rec ` R ) f /\ f ( t*rec ` R ) g ) /\ ph ) ) -> d e. ( t*rec ` R ) ) ) |
| 101 |
5 100
|
sylbid |
|- ( d = <. e , g >. -> ( ( d = <. e , g >. /\ ( E. f ( e ( t*rec ` R ) f /\ f ( t*rec ` R ) g ) /\ ph ) ) -> d e. ( t*rec ` R ) ) ) |
| 102 |
101
|
anabsi5 |
|- ( ( d = <. e , g >. /\ ( E. f ( e ( t*rec ` R ) f /\ f ( t*rec ` R ) g ) /\ ph ) ) -> d e. ( t*rec ` R ) ) |
| 103 |
102
|
anassrs |
|- ( ( ( d = <. e , g >. /\ E. f ( e ( t*rec ` R ) f /\ f ( t*rec ` R ) g ) ) /\ ph ) -> d e. ( t*rec ` R ) ) |
| 104 |
103
|
expcom |
|- ( ph -> ( ( d = <. e , g >. /\ E. f ( e ( t*rec ` R ) f /\ f ( t*rec ` R ) g ) ) -> d e. ( t*rec ` R ) ) ) |
| 105 |
104
|
exlimdvv |
|- ( ph -> ( E. e E. g ( d = <. e , g >. /\ E. f ( e ( t*rec ` R ) f /\ f ( t*rec ` R ) g ) ) -> d e. ( t*rec ` R ) ) ) |
| 106 |
3 105
|
biimtrid |
|- ( ph -> ( d e. { <. e , g >. | E. f ( e ( t*rec ` R ) f /\ f ( t*rec ` R ) g ) } -> d e. ( t*rec ` R ) ) ) |
| 107 |
|
eleq2 |
|- ( ( ( t*rec ` R ) o. ( t*rec ` R ) ) = { <. e , g >. | E. f ( e ( t*rec ` R ) f /\ f ( t*rec ` R ) g ) } -> ( d e. ( ( t*rec ` R ) o. ( t*rec ` R ) ) <-> d e. { <. e , g >. | E. f ( e ( t*rec ` R ) f /\ f ( t*rec ` R ) g ) } ) ) |
| 108 |
107
|
imbi1d |
|- ( ( ( t*rec ` R ) o. ( t*rec ` R ) ) = { <. e , g >. | E. f ( e ( t*rec ` R ) f /\ f ( t*rec ` R ) g ) } -> ( ( d e. ( ( t*rec ` R ) o. ( t*rec ` R ) ) -> d e. ( t*rec ` R ) ) <-> ( d e. { <. e , g >. | E. f ( e ( t*rec ` R ) f /\ f ( t*rec ` R ) g ) } -> d e. ( t*rec ` R ) ) ) ) |
| 109 |
106 108
|
imbitrrid |
|- ( ( ( t*rec ` R ) o. ( t*rec ` R ) ) = { <. e , g >. | E. f ( e ( t*rec ` R ) f /\ f ( t*rec ` R ) g ) } -> ( ph -> ( d e. ( ( t*rec ` R ) o. ( t*rec ` R ) ) -> d e. ( t*rec ` R ) ) ) ) |
| 110 |
2 109
|
ax-mp |
|- ( ph -> ( d e. ( ( t*rec ` R ) o. ( t*rec ` R ) ) -> d e. ( t*rec ` R ) ) ) |
| 111 |
110
|
ssrdv |
|- ( ph -> ( ( t*rec ` R ) o. ( t*rec ` R ) ) C_ ( t*rec ` R ) ) |