| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rtrclreclem.1 |
|- ( ph -> Rel R ) |
| 2 |
|
eqidd |
|- ( ( ph /\ R e. _V ) -> ( r e. _V |-> U_ n e. NN0 ( r ^r n ) ) = ( r e. _V |-> U_ n e. NN0 ( r ^r n ) ) ) |
| 3 |
|
oveq1 |
|- ( r = R -> ( r ^r n ) = ( R ^r n ) ) |
| 4 |
3
|
iuneq2d |
|- ( r = R -> U_ n e. NN0 ( r ^r n ) = U_ n e. NN0 ( R ^r n ) ) |
| 5 |
4
|
adantl |
|- ( ( ( ph /\ R e. _V ) /\ r = R ) -> U_ n e. NN0 ( r ^r n ) = U_ n e. NN0 ( R ^r n ) ) |
| 6 |
|
simpr |
|- ( ( ph /\ R e. _V ) -> R e. _V ) |
| 7 |
|
nn0ex |
|- NN0 e. _V |
| 8 |
|
ovex |
|- ( R ^r n ) e. _V |
| 9 |
7 8
|
iunex |
|- U_ n e. NN0 ( R ^r n ) e. _V |
| 10 |
9
|
a1i |
|- ( ( ph /\ R e. _V ) -> U_ n e. NN0 ( R ^r n ) e. _V ) |
| 11 |
2 5 6 10
|
fvmptd |
|- ( ( ph /\ R e. _V ) -> ( ( r e. _V |-> U_ n e. NN0 ( r ^r n ) ) ` R ) = U_ n e. NN0 ( R ^r n ) ) |
| 12 |
|
eleq1 |
|- ( i = 0 -> ( i e. NN0 <-> 0 e. NN0 ) ) |
| 13 |
12
|
anbi1d |
|- ( i = 0 -> ( ( i e. NN0 /\ ( ( ph /\ R e. _V ) /\ ( ( s o. s ) C_ s /\ ( R C_ s /\ ( _I |` ( dom R u. ran R ) ) C_ s ) ) ) ) <-> ( 0 e. NN0 /\ ( ( ph /\ R e. _V ) /\ ( ( s o. s ) C_ s /\ ( R C_ s /\ ( _I |` ( dom R u. ran R ) ) C_ s ) ) ) ) ) ) |
| 14 |
|
oveq2 |
|- ( i = 0 -> ( R ^r i ) = ( R ^r 0 ) ) |
| 15 |
14
|
sseq1d |
|- ( i = 0 -> ( ( R ^r i ) C_ s <-> ( R ^r 0 ) C_ s ) ) |
| 16 |
13 15
|
imbi12d |
|- ( i = 0 -> ( ( ( i e. NN0 /\ ( ( ph /\ R e. _V ) /\ ( ( s o. s ) C_ s /\ ( R C_ s /\ ( _I |` ( dom R u. ran R ) ) C_ s ) ) ) ) -> ( R ^r i ) C_ s ) <-> ( ( 0 e. NN0 /\ ( ( ph /\ R e. _V ) /\ ( ( s o. s ) C_ s /\ ( R C_ s /\ ( _I |` ( dom R u. ran R ) ) C_ s ) ) ) ) -> ( R ^r 0 ) C_ s ) ) ) |
| 17 |
|
eleq1 |
|- ( i = m -> ( i e. NN0 <-> m e. NN0 ) ) |
| 18 |
17
|
anbi1d |
|- ( i = m -> ( ( i e. NN0 /\ ( ( ph /\ R e. _V ) /\ ( ( s o. s ) C_ s /\ ( R C_ s /\ ( _I |` ( dom R u. ran R ) ) C_ s ) ) ) ) <-> ( m e. NN0 /\ ( ( ph /\ R e. _V ) /\ ( ( s o. s ) C_ s /\ ( R C_ s /\ ( _I |` ( dom R u. ran R ) ) C_ s ) ) ) ) ) ) |
| 19 |
|
oveq2 |
|- ( i = m -> ( R ^r i ) = ( R ^r m ) ) |
| 20 |
19
|
sseq1d |
|- ( i = m -> ( ( R ^r i ) C_ s <-> ( R ^r m ) C_ s ) ) |
| 21 |
18 20
|
imbi12d |
|- ( i = m -> ( ( ( i e. NN0 /\ ( ( ph /\ R e. _V ) /\ ( ( s o. s ) C_ s /\ ( R C_ s /\ ( _I |` ( dom R u. ran R ) ) C_ s ) ) ) ) -> ( R ^r i ) C_ s ) <-> ( ( m e. NN0 /\ ( ( ph /\ R e. _V ) /\ ( ( s o. s ) C_ s /\ ( R C_ s /\ ( _I |` ( dom R u. ran R ) ) C_ s ) ) ) ) -> ( R ^r m ) C_ s ) ) ) |
| 22 |
|
eleq1 |
|- ( i = ( m + 1 ) -> ( i e. NN0 <-> ( m + 1 ) e. NN0 ) ) |
| 23 |
22
|
anbi1d |
|- ( i = ( m + 1 ) -> ( ( i e. NN0 /\ ( ( ph /\ R e. _V ) /\ ( ( s o. s ) C_ s /\ ( R C_ s /\ ( _I |` ( dom R u. ran R ) ) C_ s ) ) ) ) <-> ( ( m + 1 ) e. NN0 /\ ( ( ph /\ R e. _V ) /\ ( ( s o. s ) C_ s /\ ( R C_ s /\ ( _I |` ( dom R u. ran R ) ) C_ s ) ) ) ) ) ) |
| 24 |
|
oveq2 |
|- ( i = ( m + 1 ) -> ( R ^r i ) = ( R ^r ( m + 1 ) ) ) |
| 25 |
24
|
sseq1d |
|- ( i = ( m + 1 ) -> ( ( R ^r i ) C_ s <-> ( R ^r ( m + 1 ) ) C_ s ) ) |
| 26 |
23 25
|
imbi12d |
|- ( i = ( m + 1 ) -> ( ( ( i e. NN0 /\ ( ( ph /\ R e. _V ) /\ ( ( s o. s ) C_ s /\ ( R C_ s /\ ( _I |` ( dom R u. ran R ) ) C_ s ) ) ) ) -> ( R ^r i ) C_ s ) <-> ( ( ( m + 1 ) e. NN0 /\ ( ( ph /\ R e. _V ) /\ ( ( s o. s ) C_ s /\ ( R C_ s /\ ( _I |` ( dom R u. ran R ) ) C_ s ) ) ) ) -> ( R ^r ( m + 1 ) ) C_ s ) ) ) |
| 27 |
|
eleq1 |
|- ( i = n -> ( i e. NN0 <-> n e. NN0 ) ) |
| 28 |
27
|
anbi1d |
|- ( i = n -> ( ( i e. NN0 /\ ( ( ph /\ R e. _V ) /\ ( ( s o. s ) C_ s /\ ( R C_ s /\ ( _I |` ( dom R u. ran R ) ) C_ s ) ) ) ) <-> ( n e. NN0 /\ ( ( ph /\ R e. _V ) /\ ( ( s o. s ) C_ s /\ ( R C_ s /\ ( _I |` ( dom R u. ran R ) ) C_ s ) ) ) ) ) ) |
| 29 |
|
oveq2 |
|- ( i = n -> ( R ^r i ) = ( R ^r n ) ) |
| 30 |
29
|
sseq1d |
|- ( i = n -> ( ( R ^r i ) C_ s <-> ( R ^r n ) C_ s ) ) |
| 31 |
28 30
|
imbi12d |
|- ( i = n -> ( ( ( i e. NN0 /\ ( ( ph /\ R e. _V ) /\ ( ( s o. s ) C_ s /\ ( R C_ s /\ ( _I |` ( dom R u. ran R ) ) C_ s ) ) ) ) -> ( R ^r i ) C_ s ) <-> ( ( n e. NN0 /\ ( ( ph /\ R e. _V ) /\ ( ( s o. s ) C_ s /\ ( R C_ s /\ ( _I |` ( dom R u. ran R ) ) C_ s ) ) ) ) -> ( R ^r n ) C_ s ) ) ) |
| 32 |
|
simprll |
|- ( ( 0 e. NN0 /\ ( ( ph /\ R e. _V ) /\ ( ( s o. s ) C_ s /\ ( R C_ s /\ ( _I |` ( dom R u. ran R ) ) C_ s ) ) ) ) -> ph ) |
| 33 |
32 1
|
syl |
|- ( ( 0 e. NN0 /\ ( ( ph /\ R e. _V ) /\ ( ( s o. s ) C_ s /\ ( R C_ s /\ ( _I |` ( dom R u. ran R ) ) C_ s ) ) ) ) -> Rel R ) |
| 34 |
|
simprlr |
|- ( ( 0 e. NN0 /\ ( ( ph /\ R e. _V ) /\ ( ( s o. s ) C_ s /\ ( R C_ s /\ ( _I |` ( dom R u. ran R ) ) C_ s ) ) ) ) -> R e. _V ) |
| 35 |
33 34
|
relexp0d |
|- ( ( 0 e. NN0 /\ ( ( ph /\ R e. _V ) /\ ( ( s o. s ) C_ s /\ ( R C_ s /\ ( _I |` ( dom R u. ran R ) ) C_ s ) ) ) ) -> ( R ^r 0 ) = ( _I |` U. U. R ) ) |
| 36 |
|
relfld |
|- ( Rel R -> U. U. R = ( dom R u. ran R ) ) |
| 37 |
33 36
|
syl |
|- ( ( 0 e. NN0 /\ ( ( ph /\ R e. _V ) /\ ( ( s o. s ) C_ s /\ ( R C_ s /\ ( _I |` ( dom R u. ran R ) ) C_ s ) ) ) ) -> U. U. R = ( dom R u. ran R ) ) |
| 38 |
|
simprrr |
|- ( ( ( ph /\ R e. _V ) /\ ( ( s o. s ) C_ s /\ ( R C_ s /\ ( _I |` ( dom R u. ran R ) ) C_ s ) ) ) -> ( _I |` ( dom R u. ran R ) ) C_ s ) |
| 39 |
38
|
adantl |
|- ( ( 0 e. NN0 /\ ( ( ph /\ R e. _V ) /\ ( ( s o. s ) C_ s /\ ( R C_ s /\ ( _I |` ( dom R u. ran R ) ) C_ s ) ) ) ) -> ( _I |` ( dom R u. ran R ) ) C_ s ) |
| 40 |
|
reseq2 |
|- ( U. U. R = ( dom R u. ran R ) -> ( _I |` U. U. R ) = ( _I |` ( dom R u. ran R ) ) ) |
| 41 |
40
|
sseq1d |
|- ( U. U. R = ( dom R u. ran R ) -> ( ( _I |` U. U. R ) C_ s <-> ( _I |` ( dom R u. ran R ) ) C_ s ) ) |
| 42 |
39 41
|
imbitrrid |
|- ( U. U. R = ( dom R u. ran R ) -> ( ( 0 e. NN0 /\ ( ( ph /\ R e. _V ) /\ ( ( s o. s ) C_ s /\ ( R C_ s /\ ( _I |` ( dom R u. ran R ) ) C_ s ) ) ) ) -> ( _I |` U. U. R ) C_ s ) ) |
| 43 |
37 42
|
mpcom |
|- ( ( 0 e. NN0 /\ ( ( ph /\ R e. _V ) /\ ( ( s o. s ) C_ s /\ ( R C_ s /\ ( _I |` ( dom R u. ran R ) ) C_ s ) ) ) ) -> ( _I |` U. U. R ) C_ s ) |
| 44 |
35 43
|
eqsstrd |
|- ( ( 0 e. NN0 /\ ( ( ph /\ R e. _V ) /\ ( ( s o. s ) C_ s /\ ( R C_ s /\ ( _I |` ( dom R u. ran R ) ) C_ s ) ) ) ) -> ( R ^r 0 ) C_ s ) |
| 45 |
|
simprrr |
|- ( ( R C_ s /\ ( ( _I |` ( dom R u. ran R ) ) C_ s /\ ( ( ( m e. NN0 /\ ( ( ph /\ R e. _V ) /\ ( ( s o. s ) C_ s /\ ( R C_ s /\ ( _I |` ( dom R u. ran R ) ) C_ s ) ) ) ) -> ( R ^r m ) C_ s ) /\ m e. NN0 ) ) ) -> m e. NN0 ) |
| 46 |
45
|
adantl |
|- ( ( ( s o. s ) C_ s /\ ( R C_ s /\ ( ( _I |` ( dom R u. ran R ) ) C_ s /\ ( ( ( m e. NN0 /\ ( ( ph /\ R e. _V ) /\ ( ( s o. s ) C_ s /\ ( R C_ s /\ ( _I |` ( dom R u. ran R ) ) C_ s ) ) ) ) -> ( R ^r m ) C_ s ) /\ m e. NN0 ) ) ) ) -> m e. NN0 ) |
| 47 |
46
|
adantl |
|- ( ( ( ph /\ R e. _V ) /\ ( ( s o. s ) C_ s /\ ( R C_ s /\ ( ( _I |` ( dom R u. ran R ) ) C_ s /\ ( ( ( m e. NN0 /\ ( ( ph /\ R e. _V ) /\ ( ( s o. s ) C_ s /\ ( R C_ s /\ ( _I |` ( dom R u. ran R ) ) C_ s ) ) ) ) -> ( R ^r m ) C_ s ) /\ m e. NN0 ) ) ) ) ) -> m e. NN0 ) |
| 48 |
47
|
adantl |
|- ( ( ( m + 1 ) e. NN0 /\ ( ( ph /\ R e. _V ) /\ ( ( s o. s ) C_ s /\ ( R C_ s /\ ( ( _I |` ( dom R u. ran R ) ) C_ s /\ ( ( ( m e. NN0 /\ ( ( ph /\ R e. _V ) /\ ( ( s o. s ) C_ s /\ ( R C_ s /\ ( _I |` ( dom R u. ran R ) ) C_ s ) ) ) ) -> ( R ^r m ) C_ s ) /\ m e. NN0 ) ) ) ) ) ) -> m e. NN0 ) |
| 49 |
|
simprl |
|- ( ( ( m + 1 ) e. NN0 /\ ( ( ph /\ R e. _V ) /\ ( ( s o. s ) C_ s /\ ( R C_ s /\ ( ( _I |` ( dom R u. ran R ) ) C_ s /\ ( ( ( m e. NN0 /\ ( ( ph /\ R e. _V ) /\ ( ( s o. s ) C_ s /\ ( R C_ s /\ ( _I |` ( dom R u. ran R ) ) C_ s ) ) ) ) -> ( R ^r m ) C_ s ) /\ m e. NN0 ) ) ) ) ) ) -> ( ph /\ R e. _V ) ) |
| 50 |
|
simprrl |
|- ( ( ( m + 1 ) e. NN0 /\ ( ( ph /\ R e. _V ) /\ ( ( s o. s ) C_ s /\ ( R C_ s /\ ( ( _I |` ( dom R u. ran R ) ) C_ s /\ ( ( ( m e. NN0 /\ ( ( ph /\ R e. _V ) /\ ( ( s o. s ) C_ s /\ ( R C_ s /\ ( _I |` ( dom R u. ran R ) ) C_ s ) ) ) ) -> ( R ^r m ) C_ s ) /\ m e. NN0 ) ) ) ) ) ) -> ( s o. s ) C_ s ) |
| 51 |
|
simprrl |
|- ( ( ( ph /\ R e. _V ) /\ ( ( s o. s ) C_ s /\ ( R C_ s /\ ( ( _I |` ( dom R u. ran R ) ) C_ s /\ ( ( ( m e. NN0 /\ ( ( ph /\ R e. _V ) /\ ( ( s o. s ) C_ s /\ ( R C_ s /\ ( _I |` ( dom R u. ran R ) ) C_ s ) ) ) ) -> ( R ^r m ) C_ s ) /\ m e. NN0 ) ) ) ) ) -> R C_ s ) |
| 52 |
51
|
adantl |
|- ( ( ( m + 1 ) e. NN0 /\ ( ( ph /\ R e. _V ) /\ ( ( s o. s ) C_ s /\ ( R C_ s /\ ( ( _I |` ( dom R u. ran R ) ) C_ s /\ ( ( ( m e. NN0 /\ ( ( ph /\ R e. _V ) /\ ( ( s o. s ) C_ s /\ ( R C_ s /\ ( _I |` ( dom R u. ran R ) ) C_ s ) ) ) ) -> ( R ^r m ) C_ s ) /\ m e. NN0 ) ) ) ) ) ) -> R C_ s ) |
| 53 |
|
simprrl |
|- ( ( ( s o. s ) C_ s /\ ( R C_ s /\ ( ( _I |` ( dom R u. ran R ) ) C_ s /\ ( ( ( m e. NN0 /\ ( ( ph /\ R e. _V ) /\ ( ( s o. s ) C_ s /\ ( R C_ s /\ ( _I |` ( dom R u. ran R ) ) C_ s ) ) ) ) -> ( R ^r m ) C_ s ) /\ m e. NN0 ) ) ) ) -> ( _I |` ( dom R u. ran R ) ) C_ s ) |
| 54 |
53
|
adantl |
|- ( ( ( ph /\ R e. _V ) /\ ( ( s o. s ) C_ s /\ ( R C_ s /\ ( ( _I |` ( dom R u. ran R ) ) C_ s /\ ( ( ( m e. NN0 /\ ( ( ph /\ R e. _V ) /\ ( ( s o. s ) C_ s /\ ( R C_ s /\ ( _I |` ( dom R u. ran R ) ) C_ s ) ) ) ) -> ( R ^r m ) C_ s ) /\ m e. NN0 ) ) ) ) ) -> ( _I |` ( dom R u. ran R ) ) C_ s ) |
| 55 |
54
|
adantl |
|- ( ( ( m + 1 ) e. NN0 /\ ( ( ph /\ R e. _V ) /\ ( ( s o. s ) C_ s /\ ( R C_ s /\ ( ( _I |` ( dom R u. ran R ) ) C_ s /\ ( ( ( m e. NN0 /\ ( ( ph /\ R e. _V ) /\ ( ( s o. s ) C_ s /\ ( R C_ s /\ ( _I |` ( dom R u. ran R ) ) C_ s ) ) ) ) -> ( R ^r m ) C_ s ) /\ m e. NN0 ) ) ) ) ) ) -> ( _I |` ( dom R u. ran R ) ) C_ s ) |
| 56 |
50 52 55
|
jca32 |
|- ( ( ( m + 1 ) e. NN0 /\ ( ( ph /\ R e. _V ) /\ ( ( s o. s ) C_ s /\ ( R C_ s /\ ( ( _I |` ( dom R u. ran R ) ) C_ s /\ ( ( ( m e. NN0 /\ ( ( ph /\ R e. _V ) /\ ( ( s o. s ) C_ s /\ ( R C_ s /\ ( _I |` ( dom R u. ran R ) ) C_ s ) ) ) ) -> ( R ^r m ) C_ s ) /\ m e. NN0 ) ) ) ) ) ) -> ( ( s o. s ) C_ s /\ ( R C_ s /\ ( _I |` ( dom R u. ran R ) ) C_ s ) ) ) |
| 57 |
48 49 56
|
jca32 |
|- ( ( ( m + 1 ) e. NN0 /\ ( ( ph /\ R e. _V ) /\ ( ( s o. s ) C_ s /\ ( R C_ s /\ ( ( _I |` ( dom R u. ran R ) ) C_ s /\ ( ( ( m e. NN0 /\ ( ( ph /\ R e. _V ) /\ ( ( s o. s ) C_ s /\ ( R C_ s /\ ( _I |` ( dom R u. ran R ) ) C_ s ) ) ) ) -> ( R ^r m ) C_ s ) /\ m e. NN0 ) ) ) ) ) ) -> ( m e. NN0 /\ ( ( ph /\ R e. _V ) /\ ( ( s o. s ) C_ s /\ ( R C_ s /\ ( _I |` ( dom R u. ran R ) ) C_ s ) ) ) ) ) |
| 58 |
|
simprrl |
|- ( ( R C_ s /\ ( ( _I |` ( dom R u. ran R ) ) C_ s /\ ( ( ( m e. NN0 /\ ( ( ph /\ R e. _V ) /\ ( ( s o. s ) C_ s /\ ( R C_ s /\ ( _I |` ( dom R u. ran R ) ) C_ s ) ) ) ) -> ( R ^r m ) C_ s ) /\ m e. NN0 ) ) ) -> ( ( m e. NN0 /\ ( ( ph /\ R e. _V ) /\ ( ( s o. s ) C_ s /\ ( R C_ s /\ ( _I |` ( dom R u. ran R ) ) C_ s ) ) ) ) -> ( R ^r m ) C_ s ) ) |
| 59 |
58
|
adantl |
|- ( ( ( s o. s ) C_ s /\ ( R C_ s /\ ( ( _I |` ( dom R u. ran R ) ) C_ s /\ ( ( ( m e. NN0 /\ ( ( ph /\ R e. _V ) /\ ( ( s o. s ) C_ s /\ ( R C_ s /\ ( _I |` ( dom R u. ran R ) ) C_ s ) ) ) ) -> ( R ^r m ) C_ s ) /\ m e. NN0 ) ) ) ) -> ( ( m e. NN0 /\ ( ( ph /\ R e. _V ) /\ ( ( s o. s ) C_ s /\ ( R C_ s /\ ( _I |` ( dom R u. ran R ) ) C_ s ) ) ) ) -> ( R ^r m ) C_ s ) ) |
| 60 |
59
|
adantl |
|- ( ( ( ph /\ R e. _V ) /\ ( ( s o. s ) C_ s /\ ( R C_ s /\ ( ( _I |` ( dom R u. ran R ) ) C_ s /\ ( ( ( m e. NN0 /\ ( ( ph /\ R e. _V ) /\ ( ( s o. s ) C_ s /\ ( R C_ s /\ ( _I |` ( dom R u. ran R ) ) C_ s ) ) ) ) -> ( R ^r m ) C_ s ) /\ m e. NN0 ) ) ) ) ) -> ( ( m e. NN0 /\ ( ( ph /\ R e. _V ) /\ ( ( s o. s ) C_ s /\ ( R C_ s /\ ( _I |` ( dom R u. ran R ) ) C_ s ) ) ) ) -> ( R ^r m ) C_ s ) ) |
| 61 |
60
|
adantl |
|- ( ( ( m + 1 ) e. NN0 /\ ( ( ph /\ R e. _V ) /\ ( ( s o. s ) C_ s /\ ( R C_ s /\ ( ( _I |` ( dom R u. ran R ) ) C_ s /\ ( ( ( m e. NN0 /\ ( ( ph /\ R e. _V ) /\ ( ( s o. s ) C_ s /\ ( R C_ s /\ ( _I |` ( dom R u. ran R ) ) C_ s ) ) ) ) -> ( R ^r m ) C_ s ) /\ m e. NN0 ) ) ) ) ) ) -> ( ( m e. NN0 /\ ( ( ph /\ R e. _V ) /\ ( ( s o. s ) C_ s /\ ( R C_ s /\ ( _I |` ( dom R u. ran R ) ) C_ s ) ) ) ) -> ( R ^r m ) C_ s ) ) |
| 62 |
57 61
|
mpd |
|- ( ( ( m + 1 ) e. NN0 /\ ( ( ph /\ R e. _V ) /\ ( ( s o. s ) C_ s /\ ( R C_ s /\ ( ( _I |` ( dom R u. ran R ) ) C_ s /\ ( ( ( m e. NN0 /\ ( ( ph /\ R e. _V ) /\ ( ( s o. s ) C_ s /\ ( R C_ s /\ ( _I |` ( dom R u. ran R ) ) C_ s ) ) ) ) -> ( R ^r m ) C_ s ) /\ m e. NN0 ) ) ) ) ) ) -> ( R ^r m ) C_ s ) |
| 63 |
|
simprll |
|- ( ( ( m + 1 ) e. NN0 /\ ( ( ph /\ R e. _V ) /\ ( ( s o. s ) C_ s /\ ( R C_ s /\ ( ( _I |` ( dom R u. ran R ) ) C_ s /\ ( ( ( m e. NN0 /\ ( ( ph /\ R e. _V ) /\ ( ( s o. s ) C_ s /\ ( R C_ s /\ ( _I |` ( dom R u. ran R ) ) C_ s ) ) ) ) -> ( R ^r m ) C_ s ) /\ m e. NN0 ) ) ) ) ) ) -> ph ) |
| 64 |
63
|
adantl |
|- ( ( ( R ^r m ) C_ s /\ ( ( m + 1 ) e. NN0 /\ ( ( ph /\ R e. _V ) /\ ( ( s o. s ) C_ s /\ ( R C_ s /\ ( ( _I |` ( dom R u. ran R ) ) C_ s /\ ( ( ( m e. NN0 /\ ( ( ph /\ R e. _V ) /\ ( ( s o. s ) C_ s /\ ( R C_ s /\ ( _I |` ( dom R u. ran R ) ) C_ s ) ) ) ) -> ( R ^r m ) C_ s ) /\ m e. NN0 ) ) ) ) ) ) ) -> ph ) |
| 65 |
64 1
|
syl |
|- ( ( ( R ^r m ) C_ s /\ ( ( m + 1 ) e. NN0 /\ ( ( ph /\ R e. _V ) /\ ( ( s o. s ) C_ s /\ ( R C_ s /\ ( ( _I |` ( dom R u. ran R ) ) C_ s /\ ( ( ( m e. NN0 /\ ( ( ph /\ R e. _V ) /\ ( ( s o. s ) C_ s /\ ( R C_ s /\ ( _I |` ( dom R u. ran R ) ) C_ s ) ) ) ) -> ( R ^r m ) C_ s ) /\ m e. NN0 ) ) ) ) ) ) ) -> Rel R ) |
| 66 |
48
|
adantl |
|- ( ( ( R ^r m ) C_ s /\ ( ( m + 1 ) e. NN0 /\ ( ( ph /\ R e. _V ) /\ ( ( s o. s ) C_ s /\ ( R C_ s /\ ( ( _I |` ( dom R u. ran R ) ) C_ s /\ ( ( ( m e. NN0 /\ ( ( ph /\ R e. _V ) /\ ( ( s o. s ) C_ s /\ ( R C_ s /\ ( _I |` ( dom R u. ran R ) ) C_ s ) ) ) ) -> ( R ^r m ) C_ s ) /\ m e. NN0 ) ) ) ) ) ) ) -> m e. NN0 ) |
| 67 |
65 66
|
relexpsucrd |
|- ( ( ( R ^r m ) C_ s /\ ( ( m + 1 ) e. NN0 /\ ( ( ph /\ R e. _V ) /\ ( ( s o. s ) C_ s /\ ( R C_ s /\ ( ( _I |` ( dom R u. ran R ) ) C_ s /\ ( ( ( m e. NN0 /\ ( ( ph /\ R e. _V ) /\ ( ( s o. s ) C_ s /\ ( R C_ s /\ ( _I |` ( dom R u. ran R ) ) C_ s ) ) ) ) -> ( R ^r m ) C_ s ) /\ m e. NN0 ) ) ) ) ) ) ) -> ( R ^r ( m + 1 ) ) = ( ( R ^r m ) o. R ) ) |
| 68 |
52
|
adantl |
|- ( ( ( R ^r m ) C_ s /\ ( ( m + 1 ) e. NN0 /\ ( ( ph /\ R e. _V ) /\ ( ( s o. s ) C_ s /\ ( R C_ s /\ ( ( _I |` ( dom R u. ran R ) ) C_ s /\ ( ( ( m e. NN0 /\ ( ( ph /\ R e. _V ) /\ ( ( s o. s ) C_ s /\ ( R C_ s /\ ( _I |` ( dom R u. ran R ) ) C_ s ) ) ) ) -> ( R ^r m ) C_ s ) /\ m e. NN0 ) ) ) ) ) ) ) -> R C_ s ) |
| 69 |
|
coss2 |
|- ( R C_ s -> ( ( R ^r m ) o. R ) C_ ( ( R ^r m ) o. s ) ) |
| 70 |
68 69
|
syl |
|- ( ( ( R ^r m ) C_ s /\ ( ( m + 1 ) e. NN0 /\ ( ( ph /\ R e. _V ) /\ ( ( s o. s ) C_ s /\ ( R C_ s /\ ( ( _I |` ( dom R u. ran R ) ) C_ s /\ ( ( ( m e. NN0 /\ ( ( ph /\ R e. _V ) /\ ( ( s o. s ) C_ s /\ ( R C_ s /\ ( _I |` ( dom R u. ran R ) ) C_ s ) ) ) ) -> ( R ^r m ) C_ s ) /\ m e. NN0 ) ) ) ) ) ) ) -> ( ( R ^r m ) o. R ) C_ ( ( R ^r m ) o. s ) ) |
| 71 |
|
coss1 |
|- ( ( R ^r m ) C_ s -> ( ( R ^r m ) o. s ) C_ ( s o. s ) ) |
| 72 |
71 50
|
sylan9ss |
|- ( ( ( R ^r m ) C_ s /\ ( ( m + 1 ) e. NN0 /\ ( ( ph /\ R e. _V ) /\ ( ( s o. s ) C_ s /\ ( R C_ s /\ ( ( _I |` ( dom R u. ran R ) ) C_ s /\ ( ( ( m e. NN0 /\ ( ( ph /\ R e. _V ) /\ ( ( s o. s ) C_ s /\ ( R C_ s /\ ( _I |` ( dom R u. ran R ) ) C_ s ) ) ) ) -> ( R ^r m ) C_ s ) /\ m e. NN0 ) ) ) ) ) ) ) -> ( ( R ^r m ) o. s ) C_ s ) |
| 73 |
70 72
|
sstrd |
|- ( ( ( R ^r m ) C_ s /\ ( ( m + 1 ) e. NN0 /\ ( ( ph /\ R e. _V ) /\ ( ( s o. s ) C_ s /\ ( R C_ s /\ ( ( _I |` ( dom R u. ran R ) ) C_ s /\ ( ( ( m e. NN0 /\ ( ( ph /\ R e. _V ) /\ ( ( s o. s ) C_ s /\ ( R C_ s /\ ( _I |` ( dom R u. ran R ) ) C_ s ) ) ) ) -> ( R ^r m ) C_ s ) /\ m e. NN0 ) ) ) ) ) ) ) -> ( ( R ^r m ) o. R ) C_ s ) |
| 74 |
67 73
|
eqsstrd |
|- ( ( ( R ^r m ) C_ s /\ ( ( m + 1 ) e. NN0 /\ ( ( ph /\ R e. _V ) /\ ( ( s o. s ) C_ s /\ ( R C_ s /\ ( ( _I |` ( dom R u. ran R ) ) C_ s /\ ( ( ( m e. NN0 /\ ( ( ph /\ R e. _V ) /\ ( ( s o. s ) C_ s /\ ( R C_ s /\ ( _I |` ( dom R u. ran R ) ) C_ s ) ) ) ) -> ( R ^r m ) C_ s ) /\ m e. NN0 ) ) ) ) ) ) ) -> ( R ^r ( m + 1 ) ) C_ s ) |
| 75 |
62 74
|
mpancom |
|- ( ( ( m + 1 ) e. NN0 /\ ( ( ph /\ R e. _V ) /\ ( ( s o. s ) C_ s /\ ( R C_ s /\ ( ( _I |` ( dom R u. ran R ) ) C_ s /\ ( ( ( m e. NN0 /\ ( ( ph /\ R e. _V ) /\ ( ( s o. s ) C_ s /\ ( R C_ s /\ ( _I |` ( dom R u. ran R ) ) C_ s ) ) ) ) -> ( R ^r m ) C_ s ) /\ m e. NN0 ) ) ) ) ) ) -> ( R ^r ( m + 1 ) ) C_ s ) |
| 76 |
75
|
expcom |
|- ( ( ( ph /\ R e. _V ) /\ ( ( s o. s ) C_ s /\ ( R C_ s /\ ( ( _I |` ( dom R u. ran R ) ) C_ s /\ ( ( ( m e. NN0 /\ ( ( ph /\ R e. _V ) /\ ( ( s o. s ) C_ s /\ ( R C_ s /\ ( _I |` ( dom R u. ran R ) ) C_ s ) ) ) ) -> ( R ^r m ) C_ s ) /\ m e. NN0 ) ) ) ) ) -> ( ( m + 1 ) e. NN0 -> ( R ^r ( m + 1 ) ) C_ s ) ) |
| 77 |
76
|
expcom |
|- ( ( ( s o. s ) C_ s /\ ( R C_ s /\ ( ( _I |` ( dom R u. ran R ) ) C_ s /\ ( ( ( m e. NN0 /\ ( ( ph /\ R e. _V ) /\ ( ( s o. s ) C_ s /\ ( R C_ s /\ ( _I |` ( dom R u. ran R ) ) C_ s ) ) ) ) -> ( R ^r m ) C_ s ) /\ m e. NN0 ) ) ) ) -> ( ( ph /\ R e. _V ) -> ( ( m + 1 ) e. NN0 -> ( R ^r ( m + 1 ) ) C_ s ) ) ) |
| 78 |
77
|
expcom |
|- ( ( R C_ s /\ ( ( _I |` ( dom R u. ran R ) ) C_ s /\ ( ( ( m e. NN0 /\ ( ( ph /\ R e. _V ) /\ ( ( s o. s ) C_ s /\ ( R C_ s /\ ( _I |` ( dom R u. ran R ) ) C_ s ) ) ) ) -> ( R ^r m ) C_ s ) /\ m e. NN0 ) ) ) -> ( ( s o. s ) C_ s -> ( ( ph /\ R e. _V ) -> ( ( m + 1 ) e. NN0 -> ( R ^r ( m + 1 ) ) C_ s ) ) ) ) |
| 79 |
78
|
anassrs |
|- ( ( ( R C_ s /\ ( _I |` ( dom R u. ran R ) ) C_ s ) /\ ( ( ( m e. NN0 /\ ( ( ph /\ R e. _V ) /\ ( ( s o. s ) C_ s /\ ( R C_ s /\ ( _I |` ( dom R u. ran R ) ) C_ s ) ) ) ) -> ( R ^r m ) C_ s ) /\ m e. NN0 ) ) -> ( ( s o. s ) C_ s -> ( ( ph /\ R e. _V ) -> ( ( m + 1 ) e. NN0 -> ( R ^r ( m + 1 ) ) C_ s ) ) ) ) |
| 80 |
79
|
impcom |
|- ( ( ( s o. s ) C_ s /\ ( ( R C_ s /\ ( _I |` ( dom R u. ran R ) ) C_ s ) /\ ( ( ( m e. NN0 /\ ( ( ph /\ R e. _V ) /\ ( ( s o. s ) C_ s /\ ( R C_ s /\ ( _I |` ( dom R u. ran R ) ) C_ s ) ) ) ) -> ( R ^r m ) C_ s ) /\ m e. NN0 ) ) ) -> ( ( ph /\ R e. _V ) -> ( ( m + 1 ) e. NN0 -> ( R ^r ( m + 1 ) ) C_ s ) ) ) |
| 81 |
80
|
anassrs |
|- ( ( ( ( s o. s ) C_ s /\ ( R C_ s /\ ( _I |` ( dom R u. ran R ) ) C_ s ) ) /\ ( ( ( m e. NN0 /\ ( ( ph /\ R e. _V ) /\ ( ( s o. s ) C_ s /\ ( R C_ s /\ ( _I |` ( dom R u. ran R ) ) C_ s ) ) ) ) -> ( R ^r m ) C_ s ) /\ m e. NN0 ) ) -> ( ( ph /\ R e. _V ) -> ( ( m + 1 ) e. NN0 -> ( R ^r ( m + 1 ) ) C_ s ) ) ) |
| 82 |
81
|
impcom |
|- ( ( ( ph /\ R e. _V ) /\ ( ( ( s o. s ) C_ s /\ ( R C_ s /\ ( _I |` ( dom R u. ran R ) ) C_ s ) ) /\ ( ( ( m e. NN0 /\ ( ( ph /\ R e. _V ) /\ ( ( s o. s ) C_ s /\ ( R C_ s /\ ( _I |` ( dom R u. ran R ) ) C_ s ) ) ) ) -> ( R ^r m ) C_ s ) /\ m e. NN0 ) ) ) -> ( ( m + 1 ) e. NN0 -> ( R ^r ( m + 1 ) ) C_ s ) ) |
| 83 |
82
|
anassrs |
|- ( ( ( ( ph /\ R e. _V ) /\ ( ( s o. s ) C_ s /\ ( R C_ s /\ ( _I |` ( dom R u. ran R ) ) C_ s ) ) ) /\ ( ( ( m e. NN0 /\ ( ( ph /\ R e. _V ) /\ ( ( s o. s ) C_ s /\ ( R C_ s /\ ( _I |` ( dom R u. ran R ) ) C_ s ) ) ) ) -> ( R ^r m ) C_ s ) /\ m e. NN0 ) ) -> ( ( m + 1 ) e. NN0 -> ( R ^r ( m + 1 ) ) C_ s ) ) |
| 84 |
83
|
impcom |
|- ( ( ( m + 1 ) e. NN0 /\ ( ( ( ph /\ R e. _V ) /\ ( ( s o. s ) C_ s /\ ( R C_ s /\ ( _I |` ( dom R u. ran R ) ) C_ s ) ) ) /\ ( ( ( m e. NN0 /\ ( ( ph /\ R e. _V ) /\ ( ( s o. s ) C_ s /\ ( R C_ s /\ ( _I |` ( dom R u. ran R ) ) C_ s ) ) ) ) -> ( R ^r m ) C_ s ) /\ m e. NN0 ) ) ) -> ( R ^r ( m + 1 ) ) C_ s ) |
| 85 |
84
|
anassrs |
|- ( ( ( ( m + 1 ) e. NN0 /\ ( ( ph /\ R e. _V ) /\ ( ( s o. s ) C_ s /\ ( R C_ s /\ ( _I |` ( dom R u. ran R ) ) C_ s ) ) ) ) /\ ( ( ( m e. NN0 /\ ( ( ph /\ R e. _V ) /\ ( ( s o. s ) C_ s /\ ( R C_ s /\ ( _I |` ( dom R u. ran R ) ) C_ s ) ) ) ) -> ( R ^r m ) C_ s ) /\ m e. NN0 ) ) -> ( R ^r ( m + 1 ) ) C_ s ) |
| 86 |
85
|
expcom |
|- ( ( ( ( m e. NN0 /\ ( ( ph /\ R e. _V ) /\ ( ( s o. s ) C_ s /\ ( R C_ s /\ ( _I |` ( dom R u. ran R ) ) C_ s ) ) ) ) -> ( R ^r m ) C_ s ) /\ m e. NN0 ) -> ( ( ( m + 1 ) e. NN0 /\ ( ( ph /\ R e. _V ) /\ ( ( s o. s ) C_ s /\ ( R C_ s /\ ( _I |` ( dom R u. ran R ) ) C_ s ) ) ) ) -> ( R ^r ( m + 1 ) ) C_ s ) ) |
| 87 |
86
|
expcom |
|- ( m e. NN0 -> ( ( ( m e. NN0 /\ ( ( ph /\ R e. _V ) /\ ( ( s o. s ) C_ s /\ ( R C_ s /\ ( _I |` ( dom R u. ran R ) ) C_ s ) ) ) ) -> ( R ^r m ) C_ s ) -> ( ( ( m + 1 ) e. NN0 /\ ( ( ph /\ R e. _V ) /\ ( ( s o. s ) C_ s /\ ( R C_ s /\ ( _I |` ( dom R u. ran R ) ) C_ s ) ) ) ) -> ( R ^r ( m + 1 ) ) C_ s ) ) ) |
| 88 |
16 21 26 31 44 87
|
nn0ind |
|- ( n e. NN0 -> ( ( n e. NN0 /\ ( ( ph /\ R e. _V ) /\ ( ( s o. s ) C_ s /\ ( R C_ s /\ ( _I |` ( dom R u. ran R ) ) C_ s ) ) ) ) -> ( R ^r n ) C_ s ) ) |
| 89 |
88
|
anabsi5 |
|- ( ( n e. NN0 /\ ( ( ph /\ R e. _V ) /\ ( ( s o. s ) C_ s /\ ( R C_ s /\ ( _I |` ( dom R u. ran R ) ) C_ s ) ) ) ) -> ( R ^r n ) C_ s ) |
| 90 |
89
|
expcom |
|- ( ( ( ph /\ R e. _V ) /\ ( ( s o. s ) C_ s /\ ( R C_ s /\ ( _I |` ( dom R u. ran R ) ) C_ s ) ) ) -> ( n e. NN0 -> ( R ^r n ) C_ s ) ) |
| 91 |
90
|
ralrimiv |
|- ( ( ( ph /\ R e. _V ) /\ ( ( s o. s ) C_ s /\ ( R C_ s /\ ( _I |` ( dom R u. ran R ) ) C_ s ) ) ) -> A. n e. NN0 ( R ^r n ) C_ s ) |
| 92 |
|
iunss |
|- ( U_ n e. NN0 ( R ^r n ) C_ s <-> A. n e. NN0 ( R ^r n ) C_ s ) |
| 93 |
91 92
|
sylibr |
|- ( ( ( ph /\ R e. _V ) /\ ( ( s o. s ) C_ s /\ ( R C_ s /\ ( _I |` ( dom R u. ran R ) ) C_ s ) ) ) -> U_ n e. NN0 ( R ^r n ) C_ s ) |
| 94 |
93
|
expcom |
|- ( ( ( s o. s ) C_ s /\ ( R C_ s /\ ( _I |` ( dom R u. ran R ) ) C_ s ) ) -> ( ( ph /\ R e. _V ) -> U_ n e. NN0 ( R ^r n ) C_ s ) ) |
| 95 |
94
|
expcom |
|- ( ( R C_ s /\ ( _I |` ( dom R u. ran R ) ) C_ s ) -> ( ( s o. s ) C_ s -> ( ( ph /\ R e. _V ) -> U_ n e. NN0 ( R ^r n ) C_ s ) ) ) |
| 96 |
95
|
expcom |
|- ( ( _I |` ( dom R u. ran R ) ) C_ s -> ( R C_ s -> ( ( s o. s ) C_ s -> ( ( ph /\ R e. _V ) -> U_ n e. NN0 ( R ^r n ) C_ s ) ) ) ) |
| 97 |
96
|
3imp1 |
|- ( ( ( ( _I |` ( dom R u. ran R ) ) C_ s /\ R C_ s /\ ( s o. s ) C_ s ) /\ ( ph /\ R e. _V ) ) -> U_ n e. NN0 ( R ^r n ) C_ s ) |
| 98 |
97
|
expcom |
|- ( ( ph /\ R e. _V ) -> ( ( ( _I |` ( dom R u. ran R ) ) C_ s /\ R C_ s /\ ( s o. s ) C_ s ) -> U_ n e. NN0 ( R ^r n ) C_ s ) ) |
| 99 |
|
sseq1 |
|- ( ( ( r e. _V |-> U_ n e. NN0 ( r ^r n ) ) ` R ) = U_ n e. NN0 ( R ^r n ) -> ( ( ( r e. _V |-> U_ n e. NN0 ( r ^r n ) ) ` R ) C_ s <-> U_ n e. NN0 ( R ^r n ) C_ s ) ) |
| 100 |
99
|
imbi2d |
|- ( ( ( r e. _V |-> U_ n e. NN0 ( r ^r n ) ) ` R ) = U_ n e. NN0 ( R ^r n ) -> ( ( ( ( _I |` ( dom R u. ran R ) ) C_ s /\ R C_ s /\ ( s o. s ) C_ s ) -> ( ( r e. _V |-> U_ n e. NN0 ( r ^r n ) ) ` R ) C_ s ) <-> ( ( ( _I |` ( dom R u. ran R ) ) C_ s /\ R C_ s /\ ( s o. s ) C_ s ) -> U_ n e. NN0 ( R ^r n ) C_ s ) ) ) |
| 101 |
98 100
|
imbitrrid |
|- ( ( ( r e. _V |-> U_ n e. NN0 ( r ^r n ) ) ` R ) = U_ n e. NN0 ( R ^r n ) -> ( ( ph /\ R e. _V ) -> ( ( ( _I |` ( dom R u. ran R ) ) C_ s /\ R C_ s /\ ( s o. s ) C_ s ) -> ( ( r e. _V |-> U_ n e. NN0 ( r ^r n ) ) ` R ) C_ s ) ) ) |
| 102 |
11 101
|
mpcom |
|- ( ( ph /\ R e. _V ) -> ( ( ( _I |` ( dom R u. ran R ) ) C_ s /\ R C_ s /\ ( s o. s ) C_ s ) -> ( ( r e. _V |-> U_ n e. NN0 ( r ^r n ) ) ` R ) C_ s ) ) |
| 103 |
|
df-rtrclrec |
|- t*rec = ( r e. _V |-> U_ n e. NN0 ( r ^r n ) ) |
| 104 |
|
fveq1 |
|- ( t*rec = ( r e. _V |-> U_ n e. NN0 ( r ^r n ) ) -> ( t*rec ` R ) = ( ( r e. _V |-> U_ n e. NN0 ( r ^r n ) ) ` R ) ) |
| 105 |
104
|
sseq1d |
|- ( t*rec = ( r e. _V |-> U_ n e. NN0 ( r ^r n ) ) -> ( ( t*rec ` R ) C_ s <-> ( ( r e. _V |-> U_ n e. NN0 ( r ^r n ) ) ` R ) C_ s ) ) |
| 106 |
105
|
imbi2d |
|- ( t*rec = ( r e. _V |-> U_ n e. NN0 ( r ^r n ) ) -> ( ( ( ( _I |` ( dom R u. ran R ) ) C_ s /\ R C_ s /\ ( s o. s ) C_ s ) -> ( t*rec ` R ) C_ s ) <-> ( ( ( _I |` ( dom R u. ran R ) ) C_ s /\ R C_ s /\ ( s o. s ) C_ s ) -> ( ( r e. _V |-> U_ n e. NN0 ( r ^r n ) ) ` R ) C_ s ) ) ) |
| 107 |
106
|
imbi2d |
|- ( t*rec = ( r e. _V |-> U_ n e. NN0 ( r ^r n ) ) -> ( ( ( ph /\ R e. _V ) -> ( ( ( _I |` ( dom R u. ran R ) ) C_ s /\ R C_ s /\ ( s o. s ) C_ s ) -> ( t*rec ` R ) C_ s ) ) <-> ( ( ph /\ R e. _V ) -> ( ( ( _I |` ( dom R u. ran R ) ) C_ s /\ R C_ s /\ ( s o. s ) C_ s ) -> ( ( r e. _V |-> U_ n e. NN0 ( r ^r n ) ) ` R ) C_ s ) ) ) ) |
| 108 |
103 107
|
ax-mp |
|- ( ( ( ph /\ R e. _V ) -> ( ( ( _I |` ( dom R u. ran R ) ) C_ s /\ R C_ s /\ ( s o. s ) C_ s ) -> ( t*rec ` R ) C_ s ) ) <-> ( ( ph /\ R e. _V ) -> ( ( ( _I |` ( dom R u. ran R ) ) C_ s /\ R C_ s /\ ( s o. s ) C_ s ) -> ( ( r e. _V |-> U_ n e. NN0 ( r ^r n ) ) ` R ) C_ s ) ) ) |
| 109 |
102 108
|
mpbir |
|- ( ( ph /\ R e. _V ) -> ( ( ( _I |` ( dom R u. ran R ) ) C_ s /\ R C_ s /\ ( s o. s ) C_ s ) -> ( t*rec ` R ) C_ s ) ) |
| 110 |
109
|
ex |
|- ( ph -> ( R e. _V -> ( ( ( _I |` ( dom R u. ran R ) ) C_ s /\ R C_ s /\ ( s o. s ) C_ s ) -> ( t*rec ` R ) C_ s ) ) ) |
| 111 |
|
fvprc |
|- ( -. R e. _V -> ( t*rec ` R ) = (/) ) |
| 112 |
|
0ss |
|- (/) C_ s |
| 113 |
111 112
|
eqsstrdi |
|- ( -. R e. _V -> ( t*rec ` R ) C_ s ) |
| 114 |
113
|
a1d |
|- ( -. R e. _V -> ( ( ( _I |` ( dom R u. ran R ) ) C_ s /\ R C_ s /\ ( s o. s ) C_ s ) -> ( t*rec ` R ) C_ s ) ) |
| 115 |
110 114
|
pm2.61d1 |
|- ( ph -> ( ( ( _I |` ( dom R u. ran R ) ) C_ s /\ R C_ s /\ ( s o. s ) C_ s ) -> ( t*rec ` R ) C_ s ) ) |
| 116 |
115
|
alrimiv |
|- ( ph -> A. s ( ( ( _I |` ( dom R u. ran R ) ) C_ s /\ R C_ s /\ ( s o. s ) C_ s ) -> ( t*rec ` R ) C_ s ) ) |