Step |
Hyp |
Ref |
Expression |
1 |
|
rtrclreclem.1 |
⊢ ( 𝜑 → Rel 𝑅 ) |
2 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑅 ∈ V ) → ( 𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 ( 𝑟 ↑𝑟 𝑛 ) ) = ( 𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 ( 𝑟 ↑𝑟 𝑛 ) ) ) |
3 |
|
oveq1 |
⊢ ( 𝑟 = 𝑅 → ( 𝑟 ↑𝑟 𝑛 ) = ( 𝑅 ↑𝑟 𝑛 ) ) |
4 |
3
|
iuneq2d |
⊢ ( 𝑟 = 𝑅 → ∪ 𝑛 ∈ ℕ0 ( 𝑟 ↑𝑟 𝑛 ) = ∪ 𝑛 ∈ ℕ0 ( 𝑅 ↑𝑟 𝑛 ) ) |
5 |
4
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑅 ∈ V ) ∧ 𝑟 = 𝑅 ) → ∪ 𝑛 ∈ ℕ0 ( 𝑟 ↑𝑟 𝑛 ) = ∪ 𝑛 ∈ ℕ0 ( 𝑅 ↑𝑟 𝑛 ) ) |
6 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑅 ∈ V ) → 𝑅 ∈ V ) |
7 |
|
nn0ex |
⊢ ℕ0 ∈ V |
8 |
|
ovex |
⊢ ( 𝑅 ↑𝑟 𝑛 ) ∈ V |
9 |
7 8
|
iunex |
⊢ ∪ 𝑛 ∈ ℕ0 ( 𝑅 ↑𝑟 𝑛 ) ∈ V |
10 |
9
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑅 ∈ V ) → ∪ 𝑛 ∈ ℕ0 ( 𝑅 ↑𝑟 𝑛 ) ∈ V ) |
11 |
2 5 6 10
|
fvmptd |
⊢ ( ( 𝜑 ∧ 𝑅 ∈ V ) → ( ( 𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 ( 𝑟 ↑𝑟 𝑛 ) ) ‘ 𝑅 ) = ∪ 𝑛 ∈ ℕ0 ( 𝑅 ↑𝑟 𝑛 ) ) |
12 |
|
eleq1 |
⊢ ( 𝑖 = 0 → ( 𝑖 ∈ ℕ0 ↔ 0 ∈ ℕ0 ) ) |
13 |
12
|
anbi1d |
⊢ ( 𝑖 = 0 → ( ( 𝑖 ∈ ℕ0 ∧ ( ( 𝜑 ∧ 𝑅 ∈ V ) ∧ ( ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ∧ ( 𝑅 ⊆ 𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) ) ) ↔ ( 0 ∈ ℕ0 ∧ ( ( 𝜑 ∧ 𝑅 ∈ V ) ∧ ( ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ∧ ( 𝑅 ⊆ 𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) ) ) ) ) |
14 |
|
oveq2 |
⊢ ( 𝑖 = 0 → ( 𝑅 ↑𝑟 𝑖 ) = ( 𝑅 ↑𝑟 0 ) ) |
15 |
14
|
sseq1d |
⊢ ( 𝑖 = 0 → ( ( 𝑅 ↑𝑟 𝑖 ) ⊆ 𝑠 ↔ ( 𝑅 ↑𝑟 0 ) ⊆ 𝑠 ) ) |
16 |
13 15
|
imbi12d |
⊢ ( 𝑖 = 0 → ( ( ( 𝑖 ∈ ℕ0 ∧ ( ( 𝜑 ∧ 𝑅 ∈ V ) ∧ ( ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ∧ ( 𝑅 ⊆ 𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) ) ) → ( 𝑅 ↑𝑟 𝑖 ) ⊆ 𝑠 ) ↔ ( ( 0 ∈ ℕ0 ∧ ( ( 𝜑 ∧ 𝑅 ∈ V ) ∧ ( ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ∧ ( 𝑅 ⊆ 𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) ) ) → ( 𝑅 ↑𝑟 0 ) ⊆ 𝑠 ) ) ) |
17 |
|
eleq1 |
⊢ ( 𝑖 = 𝑚 → ( 𝑖 ∈ ℕ0 ↔ 𝑚 ∈ ℕ0 ) ) |
18 |
17
|
anbi1d |
⊢ ( 𝑖 = 𝑚 → ( ( 𝑖 ∈ ℕ0 ∧ ( ( 𝜑 ∧ 𝑅 ∈ V ) ∧ ( ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ∧ ( 𝑅 ⊆ 𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) ) ) ↔ ( 𝑚 ∈ ℕ0 ∧ ( ( 𝜑 ∧ 𝑅 ∈ V ) ∧ ( ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ∧ ( 𝑅 ⊆ 𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) ) ) ) ) |
19 |
|
oveq2 |
⊢ ( 𝑖 = 𝑚 → ( 𝑅 ↑𝑟 𝑖 ) = ( 𝑅 ↑𝑟 𝑚 ) ) |
20 |
19
|
sseq1d |
⊢ ( 𝑖 = 𝑚 → ( ( 𝑅 ↑𝑟 𝑖 ) ⊆ 𝑠 ↔ ( 𝑅 ↑𝑟 𝑚 ) ⊆ 𝑠 ) ) |
21 |
18 20
|
imbi12d |
⊢ ( 𝑖 = 𝑚 → ( ( ( 𝑖 ∈ ℕ0 ∧ ( ( 𝜑 ∧ 𝑅 ∈ V ) ∧ ( ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ∧ ( 𝑅 ⊆ 𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) ) ) → ( 𝑅 ↑𝑟 𝑖 ) ⊆ 𝑠 ) ↔ ( ( 𝑚 ∈ ℕ0 ∧ ( ( 𝜑 ∧ 𝑅 ∈ V ) ∧ ( ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ∧ ( 𝑅 ⊆ 𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) ) ) → ( 𝑅 ↑𝑟 𝑚 ) ⊆ 𝑠 ) ) ) |
22 |
|
eleq1 |
⊢ ( 𝑖 = ( 𝑚 + 1 ) → ( 𝑖 ∈ ℕ0 ↔ ( 𝑚 + 1 ) ∈ ℕ0 ) ) |
23 |
22
|
anbi1d |
⊢ ( 𝑖 = ( 𝑚 + 1 ) → ( ( 𝑖 ∈ ℕ0 ∧ ( ( 𝜑 ∧ 𝑅 ∈ V ) ∧ ( ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ∧ ( 𝑅 ⊆ 𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) ) ) ↔ ( ( 𝑚 + 1 ) ∈ ℕ0 ∧ ( ( 𝜑 ∧ 𝑅 ∈ V ) ∧ ( ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ∧ ( 𝑅 ⊆ 𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) ) ) ) ) |
24 |
|
oveq2 |
⊢ ( 𝑖 = ( 𝑚 + 1 ) → ( 𝑅 ↑𝑟 𝑖 ) = ( 𝑅 ↑𝑟 ( 𝑚 + 1 ) ) ) |
25 |
24
|
sseq1d |
⊢ ( 𝑖 = ( 𝑚 + 1 ) → ( ( 𝑅 ↑𝑟 𝑖 ) ⊆ 𝑠 ↔ ( 𝑅 ↑𝑟 ( 𝑚 + 1 ) ) ⊆ 𝑠 ) ) |
26 |
23 25
|
imbi12d |
⊢ ( 𝑖 = ( 𝑚 + 1 ) → ( ( ( 𝑖 ∈ ℕ0 ∧ ( ( 𝜑 ∧ 𝑅 ∈ V ) ∧ ( ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ∧ ( 𝑅 ⊆ 𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) ) ) → ( 𝑅 ↑𝑟 𝑖 ) ⊆ 𝑠 ) ↔ ( ( ( 𝑚 + 1 ) ∈ ℕ0 ∧ ( ( 𝜑 ∧ 𝑅 ∈ V ) ∧ ( ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ∧ ( 𝑅 ⊆ 𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) ) ) → ( 𝑅 ↑𝑟 ( 𝑚 + 1 ) ) ⊆ 𝑠 ) ) ) |
27 |
|
eleq1 |
⊢ ( 𝑖 = 𝑛 → ( 𝑖 ∈ ℕ0 ↔ 𝑛 ∈ ℕ0 ) ) |
28 |
27
|
anbi1d |
⊢ ( 𝑖 = 𝑛 → ( ( 𝑖 ∈ ℕ0 ∧ ( ( 𝜑 ∧ 𝑅 ∈ V ) ∧ ( ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ∧ ( 𝑅 ⊆ 𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) ) ) ↔ ( 𝑛 ∈ ℕ0 ∧ ( ( 𝜑 ∧ 𝑅 ∈ V ) ∧ ( ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ∧ ( 𝑅 ⊆ 𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) ) ) ) ) |
29 |
|
oveq2 |
⊢ ( 𝑖 = 𝑛 → ( 𝑅 ↑𝑟 𝑖 ) = ( 𝑅 ↑𝑟 𝑛 ) ) |
30 |
29
|
sseq1d |
⊢ ( 𝑖 = 𝑛 → ( ( 𝑅 ↑𝑟 𝑖 ) ⊆ 𝑠 ↔ ( 𝑅 ↑𝑟 𝑛 ) ⊆ 𝑠 ) ) |
31 |
28 30
|
imbi12d |
⊢ ( 𝑖 = 𝑛 → ( ( ( 𝑖 ∈ ℕ0 ∧ ( ( 𝜑 ∧ 𝑅 ∈ V ) ∧ ( ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ∧ ( 𝑅 ⊆ 𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) ) ) → ( 𝑅 ↑𝑟 𝑖 ) ⊆ 𝑠 ) ↔ ( ( 𝑛 ∈ ℕ0 ∧ ( ( 𝜑 ∧ 𝑅 ∈ V ) ∧ ( ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ∧ ( 𝑅 ⊆ 𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) ) ) → ( 𝑅 ↑𝑟 𝑛 ) ⊆ 𝑠 ) ) ) |
32 |
|
simprll |
⊢ ( ( 0 ∈ ℕ0 ∧ ( ( 𝜑 ∧ 𝑅 ∈ V ) ∧ ( ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ∧ ( 𝑅 ⊆ 𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) ) ) → 𝜑 ) |
33 |
32 1
|
syl |
⊢ ( ( 0 ∈ ℕ0 ∧ ( ( 𝜑 ∧ 𝑅 ∈ V ) ∧ ( ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ∧ ( 𝑅 ⊆ 𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) ) ) → Rel 𝑅 ) |
34 |
|
simprlr |
⊢ ( ( 0 ∈ ℕ0 ∧ ( ( 𝜑 ∧ 𝑅 ∈ V ) ∧ ( ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ∧ ( 𝑅 ⊆ 𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) ) ) → 𝑅 ∈ V ) |
35 |
33 34
|
relexp0d |
⊢ ( ( 0 ∈ ℕ0 ∧ ( ( 𝜑 ∧ 𝑅 ∈ V ) ∧ ( ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ∧ ( 𝑅 ⊆ 𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) ) ) → ( 𝑅 ↑𝑟 0 ) = ( I ↾ ∪ ∪ 𝑅 ) ) |
36 |
|
relfld |
⊢ ( Rel 𝑅 → ∪ ∪ 𝑅 = ( dom 𝑅 ∪ ran 𝑅 ) ) |
37 |
33 36
|
syl |
⊢ ( ( 0 ∈ ℕ0 ∧ ( ( 𝜑 ∧ 𝑅 ∈ V ) ∧ ( ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ∧ ( 𝑅 ⊆ 𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) ) ) → ∪ ∪ 𝑅 = ( dom 𝑅 ∪ ran 𝑅 ) ) |
38 |
|
simprrr |
⊢ ( ( ( 𝜑 ∧ 𝑅 ∈ V ) ∧ ( ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ∧ ( 𝑅 ⊆ 𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) ) → ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) |
39 |
38
|
adantl |
⊢ ( ( 0 ∈ ℕ0 ∧ ( ( 𝜑 ∧ 𝑅 ∈ V ) ∧ ( ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ∧ ( 𝑅 ⊆ 𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) ) ) → ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) |
40 |
|
reseq2 |
⊢ ( ∪ ∪ 𝑅 = ( dom 𝑅 ∪ ran 𝑅 ) → ( I ↾ ∪ ∪ 𝑅 ) = ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ) |
41 |
40
|
sseq1d |
⊢ ( ∪ ∪ 𝑅 = ( dom 𝑅 ∪ ran 𝑅 ) → ( ( I ↾ ∪ ∪ 𝑅 ) ⊆ 𝑠 ↔ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) |
42 |
39 41
|
syl5ibr |
⊢ ( ∪ ∪ 𝑅 = ( dom 𝑅 ∪ ran 𝑅 ) → ( ( 0 ∈ ℕ0 ∧ ( ( 𝜑 ∧ 𝑅 ∈ V ) ∧ ( ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ∧ ( 𝑅 ⊆ 𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) ) ) → ( I ↾ ∪ ∪ 𝑅 ) ⊆ 𝑠 ) ) |
43 |
37 42
|
mpcom |
⊢ ( ( 0 ∈ ℕ0 ∧ ( ( 𝜑 ∧ 𝑅 ∈ V ) ∧ ( ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ∧ ( 𝑅 ⊆ 𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) ) ) → ( I ↾ ∪ ∪ 𝑅 ) ⊆ 𝑠 ) |
44 |
35 43
|
eqsstrd |
⊢ ( ( 0 ∈ ℕ0 ∧ ( ( 𝜑 ∧ 𝑅 ∈ V ) ∧ ( ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ∧ ( 𝑅 ⊆ 𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) ) ) → ( 𝑅 ↑𝑟 0 ) ⊆ 𝑠 ) |
45 |
|
simprrr |
⊢ ( ( 𝑅 ⊆ 𝑠 ∧ ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ∧ ( ( ( 𝑚 ∈ ℕ0 ∧ ( ( 𝜑 ∧ 𝑅 ∈ V ) ∧ ( ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ∧ ( 𝑅 ⊆ 𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) ) ) → ( 𝑅 ↑𝑟 𝑚 ) ⊆ 𝑠 ) ∧ 𝑚 ∈ ℕ0 ) ) ) → 𝑚 ∈ ℕ0 ) |
46 |
45
|
adantl |
⊢ ( ( ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ∧ ( 𝑅 ⊆ 𝑠 ∧ ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ∧ ( ( ( 𝑚 ∈ ℕ0 ∧ ( ( 𝜑 ∧ 𝑅 ∈ V ) ∧ ( ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ∧ ( 𝑅 ⊆ 𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) ) ) → ( 𝑅 ↑𝑟 𝑚 ) ⊆ 𝑠 ) ∧ 𝑚 ∈ ℕ0 ) ) ) ) → 𝑚 ∈ ℕ0 ) |
47 |
46
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑅 ∈ V ) ∧ ( ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ∧ ( 𝑅 ⊆ 𝑠 ∧ ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ∧ ( ( ( 𝑚 ∈ ℕ0 ∧ ( ( 𝜑 ∧ 𝑅 ∈ V ) ∧ ( ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ∧ ( 𝑅 ⊆ 𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) ) ) → ( 𝑅 ↑𝑟 𝑚 ) ⊆ 𝑠 ) ∧ 𝑚 ∈ ℕ0 ) ) ) ) ) → 𝑚 ∈ ℕ0 ) |
48 |
47
|
adantl |
⊢ ( ( ( 𝑚 + 1 ) ∈ ℕ0 ∧ ( ( 𝜑 ∧ 𝑅 ∈ V ) ∧ ( ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ∧ ( 𝑅 ⊆ 𝑠 ∧ ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ∧ ( ( ( 𝑚 ∈ ℕ0 ∧ ( ( 𝜑 ∧ 𝑅 ∈ V ) ∧ ( ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ∧ ( 𝑅 ⊆ 𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) ) ) → ( 𝑅 ↑𝑟 𝑚 ) ⊆ 𝑠 ) ∧ 𝑚 ∈ ℕ0 ) ) ) ) ) ) → 𝑚 ∈ ℕ0 ) |
49 |
|
simprl |
⊢ ( ( ( 𝑚 + 1 ) ∈ ℕ0 ∧ ( ( 𝜑 ∧ 𝑅 ∈ V ) ∧ ( ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ∧ ( 𝑅 ⊆ 𝑠 ∧ ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ∧ ( ( ( 𝑚 ∈ ℕ0 ∧ ( ( 𝜑 ∧ 𝑅 ∈ V ) ∧ ( ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ∧ ( 𝑅 ⊆ 𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) ) ) → ( 𝑅 ↑𝑟 𝑚 ) ⊆ 𝑠 ) ∧ 𝑚 ∈ ℕ0 ) ) ) ) ) ) → ( 𝜑 ∧ 𝑅 ∈ V ) ) |
50 |
|
simprrl |
⊢ ( ( ( 𝑚 + 1 ) ∈ ℕ0 ∧ ( ( 𝜑 ∧ 𝑅 ∈ V ) ∧ ( ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ∧ ( 𝑅 ⊆ 𝑠 ∧ ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ∧ ( ( ( 𝑚 ∈ ℕ0 ∧ ( ( 𝜑 ∧ 𝑅 ∈ V ) ∧ ( ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ∧ ( 𝑅 ⊆ 𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) ) ) → ( 𝑅 ↑𝑟 𝑚 ) ⊆ 𝑠 ) ∧ 𝑚 ∈ ℕ0 ) ) ) ) ) ) → ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ) |
51 |
|
simprrl |
⊢ ( ( ( 𝜑 ∧ 𝑅 ∈ V ) ∧ ( ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ∧ ( 𝑅 ⊆ 𝑠 ∧ ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ∧ ( ( ( 𝑚 ∈ ℕ0 ∧ ( ( 𝜑 ∧ 𝑅 ∈ V ) ∧ ( ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ∧ ( 𝑅 ⊆ 𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) ) ) → ( 𝑅 ↑𝑟 𝑚 ) ⊆ 𝑠 ) ∧ 𝑚 ∈ ℕ0 ) ) ) ) ) → 𝑅 ⊆ 𝑠 ) |
52 |
51
|
adantl |
⊢ ( ( ( 𝑚 + 1 ) ∈ ℕ0 ∧ ( ( 𝜑 ∧ 𝑅 ∈ V ) ∧ ( ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ∧ ( 𝑅 ⊆ 𝑠 ∧ ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ∧ ( ( ( 𝑚 ∈ ℕ0 ∧ ( ( 𝜑 ∧ 𝑅 ∈ V ) ∧ ( ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ∧ ( 𝑅 ⊆ 𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) ) ) → ( 𝑅 ↑𝑟 𝑚 ) ⊆ 𝑠 ) ∧ 𝑚 ∈ ℕ0 ) ) ) ) ) ) → 𝑅 ⊆ 𝑠 ) |
53 |
|
simprrl |
⊢ ( ( ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ∧ ( 𝑅 ⊆ 𝑠 ∧ ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ∧ ( ( ( 𝑚 ∈ ℕ0 ∧ ( ( 𝜑 ∧ 𝑅 ∈ V ) ∧ ( ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ∧ ( 𝑅 ⊆ 𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) ) ) → ( 𝑅 ↑𝑟 𝑚 ) ⊆ 𝑠 ) ∧ 𝑚 ∈ ℕ0 ) ) ) ) → ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) |
54 |
53
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑅 ∈ V ) ∧ ( ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ∧ ( 𝑅 ⊆ 𝑠 ∧ ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ∧ ( ( ( 𝑚 ∈ ℕ0 ∧ ( ( 𝜑 ∧ 𝑅 ∈ V ) ∧ ( ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ∧ ( 𝑅 ⊆ 𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) ) ) → ( 𝑅 ↑𝑟 𝑚 ) ⊆ 𝑠 ) ∧ 𝑚 ∈ ℕ0 ) ) ) ) ) → ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) |
55 |
54
|
adantl |
⊢ ( ( ( 𝑚 + 1 ) ∈ ℕ0 ∧ ( ( 𝜑 ∧ 𝑅 ∈ V ) ∧ ( ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ∧ ( 𝑅 ⊆ 𝑠 ∧ ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ∧ ( ( ( 𝑚 ∈ ℕ0 ∧ ( ( 𝜑 ∧ 𝑅 ∈ V ) ∧ ( ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ∧ ( 𝑅 ⊆ 𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) ) ) → ( 𝑅 ↑𝑟 𝑚 ) ⊆ 𝑠 ) ∧ 𝑚 ∈ ℕ0 ) ) ) ) ) ) → ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) |
56 |
50 52 55
|
jca32 |
⊢ ( ( ( 𝑚 + 1 ) ∈ ℕ0 ∧ ( ( 𝜑 ∧ 𝑅 ∈ V ) ∧ ( ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ∧ ( 𝑅 ⊆ 𝑠 ∧ ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ∧ ( ( ( 𝑚 ∈ ℕ0 ∧ ( ( 𝜑 ∧ 𝑅 ∈ V ) ∧ ( ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ∧ ( 𝑅 ⊆ 𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) ) ) → ( 𝑅 ↑𝑟 𝑚 ) ⊆ 𝑠 ) ∧ 𝑚 ∈ ℕ0 ) ) ) ) ) ) → ( ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ∧ ( 𝑅 ⊆ 𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) ) |
57 |
48 49 56
|
jca32 |
⊢ ( ( ( 𝑚 + 1 ) ∈ ℕ0 ∧ ( ( 𝜑 ∧ 𝑅 ∈ V ) ∧ ( ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ∧ ( 𝑅 ⊆ 𝑠 ∧ ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ∧ ( ( ( 𝑚 ∈ ℕ0 ∧ ( ( 𝜑 ∧ 𝑅 ∈ V ) ∧ ( ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ∧ ( 𝑅 ⊆ 𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) ) ) → ( 𝑅 ↑𝑟 𝑚 ) ⊆ 𝑠 ) ∧ 𝑚 ∈ ℕ0 ) ) ) ) ) ) → ( 𝑚 ∈ ℕ0 ∧ ( ( 𝜑 ∧ 𝑅 ∈ V ) ∧ ( ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ∧ ( 𝑅 ⊆ 𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) ) ) ) |
58 |
|
simprrl |
⊢ ( ( 𝑅 ⊆ 𝑠 ∧ ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ∧ ( ( ( 𝑚 ∈ ℕ0 ∧ ( ( 𝜑 ∧ 𝑅 ∈ V ) ∧ ( ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ∧ ( 𝑅 ⊆ 𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) ) ) → ( 𝑅 ↑𝑟 𝑚 ) ⊆ 𝑠 ) ∧ 𝑚 ∈ ℕ0 ) ) ) → ( ( 𝑚 ∈ ℕ0 ∧ ( ( 𝜑 ∧ 𝑅 ∈ V ) ∧ ( ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ∧ ( 𝑅 ⊆ 𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) ) ) → ( 𝑅 ↑𝑟 𝑚 ) ⊆ 𝑠 ) ) |
59 |
58
|
adantl |
⊢ ( ( ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ∧ ( 𝑅 ⊆ 𝑠 ∧ ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ∧ ( ( ( 𝑚 ∈ ℕ0 ∧ ( ( 𝜑 ∧ 𝑅 ∈ V ) ∧ ( ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ∧ ( 𝑅 ⊆ 𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) ) ) → ( 𝑅 ↑𝑟 𝑚 ) ⊆ 𝑠 ) ∧ 𝑚 ∈ ℕ0 ) ) ) ) → ( ( 𝑚 ∈ ℕ0 ∧ ( ( 𝜑 ∧ 𝑅 ∈ V ) ∧ ( ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ∧ ( 𝑅 ⊆ 𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) ) ) → ( 𝑅 ↑𝑟 𝑚 ) ⊆ 𝑠 ) ) |
60 |
59
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑅 ∈ V ) ∧ ( ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ∧ ( 𝑅 ⊆ 𝑠 ∧ ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ∧ ( ( ( 𝑚 ∈ ℕ0 ∧ ( ( 𝜑 ∧ 𝑅 ∈ V ) ∧ ( ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ∧ ( 𝑅 ⊆ 𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) ) ) → ( 𝑅 ↑𝑟 𝑚 ) ⊆ 𝑠 ) ∧ 𝑚 ∈ ℕ0 ) ) ) ) ) → ( ( 𝑚 ∈ ℕ0 ∧ ( ( 𝜑 ∧ 𝑅 ∈ V ) ∧ ( ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ∧ ( 𝑅 ⊆ 𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) ) ) → ( 𝑅 ↑𝑟 𝑚 ) ⊆ 𝑠 ) ) |
61 |
60
|
adantl |
⊢ ( ( ( 𝑚 + 1 ) ∈ ℕ0 ∧ ( ( 𝜑 ∧ 𝑅 ∈ V ) ∧ ( ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ∧ ( 𝑅 ⊆ 𝑠 ∧ ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ∧ ( ( ( 𝑚 ∈ ℕ0 ∧ ( ( 𝜑 ∧ 𝑅 ∈ V ) ∧ ( ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ∧ ( 𝑅 ⊆ 𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) ) ) → ( 𝑅 ↑𝑟 𝑚 ) ⊆ 𝑠 ) ∧ 𝑚 ∈ ℕ0 ) ) ) ) ) ) → ( ( 𝑚 ∈ ℕ0 ∧ ( ( 𝜑 ∧ 𝑅 ∈ V ) ∧ ( ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ∧ ( 𝑅 ⊆ 𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) ) ) → ( 𝑅 ↑𝑟 𝑚 ) ⊆ 𝑠 ) ) |
62 |
57 61
|
mpd |
⊢ ( ( ( 𝑚 + 1 ) ∈ ℕ0 ∧ ( ( 𝜑 ∧ 𝑅 ∈ V ) ∧ ( ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ∧ ( 𝑅 ⊆ 𝑠 ∧ ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ∧ ( ( ( 𝑚 ∈ ℕ0 ∧ ( ( 𝜑 ∧ 𝑅 ∈ V ) ∧ ( ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ∧ ( 𝑅 ⊆ 𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) ) ) → ( 𝑅 ↑𝑟 𝑚 ) ⊆ 𝑠 ) ∧ 𝑚 ∈ ℕ0 ) ) ) ) ) ) → ( 𝑅 ↑𝑟 𝑚 ) ⊆ 𝑠 ) |
63 |
|
simprll |
⊢ ( ( ( 𝑚 + 1 ) ∈ ℕ0 ∧ ( ( 𝜑 ∧ 𝑅 ∈ V ) ∧ ( ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ∧ ( 𝑅 ⊆ 𝑠 ∧ ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ∧ ( ( ( 𝑚 ∈ ℕ0 ∧ ( ( 𝜑 ∧ 𝑅 ∈ V ) ∧ ( ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ∧ ( 𝑅 ⊆ 𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) ) ) → ( 𝑅 ↑𝑟 𝑚 ) ⊆ 𝑠 ) ∧ 𝑚 ∈ ℕ0 ) ) ) ) ) ) → 𝜑 ) |
64 |
63
|
adantl |
⊢ ( ( ( 𝑅 ↑𝑟 𝑚 ) ⊆ 𝑠 ∧ ( ( 𝑚 + 1 ) ∈ ℕ0 ∧ ( ( 𝜑 ∧ 𝑅 ∈ V ) ∧ ( ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ∧ ( 𝑅 ⊆ 𝑠 ∧ ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ∧ ( ( ( 𝑚 ∈ ℕ0 ∧ ( ( 𝜑 ∧ 𝑅 ∈ V ) ∧ ( ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ∧ ( 𝑅 ⊆ 𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) ) ) → ( 𝑅 ↑𝑟 𝑚 ) ⊆ 𝑠 ) ∧ 𝑚 ∈ ℕ0 ) ) ) ) ) ) ) → 𝜑 ) |
65 |
64 1
|
syl |
⊢ ( ( ( 𝑅 ↑𝑟 𝑚 ) ⊆ 𝑠 ∧ ( ( 𝑚 + 1 ) ∈ ℕ0 ∧ ( ( 𝜑 ∧ 𝑅 ∈ V ) ∧ ( ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ∧ ( 𝑅 ⊆ 𝑠 ∧ ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ∧ ( ( ( 𝑚 ∈ ℕ0 ∧ ( ( 𝜑 ∧ 𝑅 ∈ V ) ∧ ( ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ∧ ( 𝑅 ⊆ 𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) ) ) → ( 𝑅 ↑𝑟 𝑚 ) ⊆ 𝑠 ) ∧ 𝑚 ∈ ℕ0 ) ) ) ) ) ) ) → Rel 𝑅 ) |
66 |
48
|
adantl |
⊢ ( ( ( 𝑅 ↑𝑟 𝑚 ) ⊆ 𝑠 ∧ ( ( 𝑚 + 1 ) ∈ ℕ0 ∧ ( ( 𝜑 ∧ 𝑅 ∈ V ) ∧ ( ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ∧ ( 𝑅 ⊆ 𝑠 ∧ ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ∧ ( ( ( 𝑚 ∈ ℕ0 ∧ ( ( 𝜑 ∧ 𝑅 ∈ V ) ∧ ( ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ∧ ( 𝑅 ⊆ 𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) ) ) → ( 𝑅 ↑𝑟 𝑚 ) ⊆ 𝑠 ) ∧ 𝑚 ∈ ℕ0 ) ) ) ) ) ) ) → 𝑚 ∈ ℕ0 ) |
67 |
65 66
|
relexpsucrd |
⊢ ( ( ( 𝑅 ↑𝑟 𝑚 ) ⊆ 𝑠 ∧ ( ( 𝑚 + 1 ) ∈ ℕ0 ∧ ( ( 𝜑 ∧ 𝑅 ∈ V ) ∧ ( ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ∧ ( 𝑅 ⊆ 𝑠 ∧ ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ∧ ( ( ( 𝑚 ∈ ℕ0 ∧ ( ( 𝜑 ∧ 𝑅 ∈ V ) ∧ ( ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ∧ ( 𝑅 ⊆ 𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) ) ) → ( 𝑅 ↑𝑟 𝑚 ) ⊆ 𝑠 ) ∧ 𝑚 ∈ ℕ0 ) ) ) ) ) ) ) → ( 𝑅 ↑𝑟 ( 𝑚 + 1 ) ) = ( ( 𝑅 ↑𝑟 𝑚 ) ∘ 𝑅 ) ) |
68 |
52
|
adantl |
⊢ ( ( ( 𝑅 ↑𝑟 𝑚 ) ⊆ 𝑠 ∧ ( ( 𝑚 + 1 ) ∈ ℕ0 ∧ ( ( 𝜑 ∧ 𝑅 ∈ V ) ∧ ( ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ∧ ( 𝑅 ⊆ 𝑠 ∧ ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ∧ ( ( ( 𝑚 ∈ ℕ0 ∧ ( ( 𝜑 ∧ 𝑅 ∈ V ) ∧ ( ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ∧ ( 𝑅 ⊆ 𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) ) ) → ( 𝑅 ↑𝑟 𝑚 ) ⊆ 𝑠 ) ∧ 𝑚 ∈ ℕ0 ) ) ) ) ) ) ) → 𝑅 ⊆ 𝑠 ) |
69 |
|
coss2 |
⊢ ( 𝑅 ⊆ 𝑠 → ( ( 𝑅 ↑𝑟 𝑚 ) ∘ 𝑅 ) ⊆ ( ( 𝑅 ↑𝑟 𝑚 ) ∘ 𝑠 ) ) |
70 |
68 69
|
syl |
⊢ ( ( ( 𝑅 ↑𝑟 𝑚 ) ⊆ 𝑠 ∧ ( ( 𝑚 + 1 ) ∈ ℕ0 ∧ ( ( 𝜑 ∧ 𝑅 ∈ V ) ∧ ( ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ∧ ( 𝑅 ⊆ 𝑠 ∧ ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ∧ ( ( ( 𝑚 ∈ ℕ0 ∧ ( ( 𝜑 ∧ 𝑅 ∈ V ) ∧ ( ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ∧ ( 𝑅 ⊆ 𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) ) ) → ( 𝑅 ↑𝑟 𝑚 ) ⊆ 𝑠 ) ∧ 𝑚 ∈ ℕ0 ) ) ) ) ) ) ) → ( ( 𝑅 ↑𝑟 𝑚 ) ∘ 𝑅 ) ⊆ ( ( 𝑅 ↑𝑟 𝑚 ) ∘ 𝑠 ) ) |
71 |
|
coss1 |
⊢ ( ( 𝑅 ↑𝑟 𝑚 ) ⊆ 𝑠 → ( ( 𝑅 ↑𝑟 𝑚 ) ∘ 𝑠 ) ⊆ ( 𝑠 ∘ 𝑠 ) ) |
72 |
71 50
|
sylan9ss |
⊢ ( ( ( 𝑅 ↑𝑟 𝑚 ) ⊆ 𝑠 ∧ ( ( 𝑚 + 1 ) ∈ ℕ0 ∧ ( ( 𝜑 ∧ 𝑅 ∈ V ) ∧ ( ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ∧ ( 𝑅 ⊆ 𝑠 ∧ ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ∧ ( ( ( 𝑚 ∈ ℕ0 ∧ ( ( 𝜑 ∧ 𝑅 ∈ V ) ∧ ( ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ∧ ( 𝑅 ⊆ 𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) ) ) → ( 𝑅 ↑𝑟 𝑚 ) ⊆ 𝑠 ) ∧ 𝑚 ∈ ℕ0 ) ) ) ) ) ) ) → ( ( 𝑅 ↑𝑟 𝑚 ) ∘ 𝑠 ) ⊆ 𝑠 ) |
73 |
70 72
|
sstrd |
⊢ ( ( ( 𝑅 ↑𝑟 𝑚 ) ⊆ 𝑠 ∧ ( ( 𝑚 + 1 ) ∈ ℕ0 ∧ ( ( 𝜑 ∧ 𝑅 ∈ V ) ∧ ( ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ∧ ( 𝑅 ⊆ 𝑠 ∧ ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ∧ ( ( ( 𝑚 ∈ ℕ0 ∧ ( ( 𝜑 ∧ 𝑅 ∈ V ) ∧ ( ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ∧ ( 𝑅 ⊆ 𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) ) ) → ( 𝑅 ↑𝑟 𝑚 ) ⊆ 𝑠 ) ∧ 𝑚 ∈ ℕ0 ) ) ) ) ) ) ) → ( ( 𝑅 ↑𝑟 𝑚 ) ∘ 𝑅 ) ⊆ 𝑠 ) |
74 |
67 73
|
eqsstrd |
⊢ ( ( ( 𝑅 ↑𝑟 𝑚 ) ⊆ 𝑠 ∧ ( ( 𝑚 + 1 ) ∈ ℕ0 ∧ ( ( 𝜑 ∧ 𝑅 ∈ V ) ∧ ( ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ∧ ( 𝑅 ⊆ 𝑠 ∧ ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ∧ ( ( ( 𝑚 ∈ ℕ0 ∧ ( ( 𝜑 ∧ 𝑅 ∈ V ) ∧ ( ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ∧ ( 𝑅 ⊆ 𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) ) ) → ( 𝑅 ↑𝑟 𝑚 ) ⊆ 𝑠 ) ∧ 𝑚 ∈ ℕ0 ) ) ) ) ) ) ) → ( 𝑅 ↑𝑟 ( 𝑚 + 1 ) ) ⊆ 𝑠 ) |
75 |
62 74
|
mpancom |
⊢ ( ( ( 𝑚 + 1 ) ∈ ℕ0 ∧ ( ( 𝜑 ∧ 𝑅 ∈ V ) ∧ ( ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ∧ ( 𝑅 ⊆ 𝑠 ∧ ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ∧ ( ( ( 𝑚 ∈ ℕ0 ∧ ( ( 𝜑 ∧ 𝑅 ∈ V ) ∧ ( ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ∧ ( 𝑅 ⊆ 𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) ) ) → ( 𝑅 ↑𝑟 𝑚 ) ⊆ 𝑠 ) ∧ 𝑚 ∈ ℕ0 ) ) ) ) ) ) → ( 𝑅 ↑𝑟 ( 𝑚 + 1 ) ) ⊆ 𝑠 ) |
76 |
75
|
expcom |
⊢ ( ( ( 𝜑 ∧ 𝑅 ∈ V ) ∧ ( ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ∧ ( 𝑅 ⊆ 𝑠 ∧ ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ∧ ( ( ( 𝑚 ∈ ℕ0 ∧ ( ( 𝜑 ∧ 𝑅 ∈ V ) ∧ ( ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ∧ ( 𝑅 ⊆ 𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) ) ) → ( 𝑅 ↑𝑟 𝑚 ) ⊆ 𝑠 ) ∧ 𝑚 ∈ ℕ0 ) ) ) ) ) → ( ( 𝑚 + 1 ) ∈ ℕ0 → ( 𝑅 ↑𝑟 ( 𝑚 + 1 ) ) ⊆ 𝑠 ) ) |
77 |
76
|
expcom |
⊢ ( ( ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ∧ ( 𝑅 ⊆ 𝑠 ∧ ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ∧ ( ( ( 𝑚 ∈ ℕ0 ∧ ( ( 𝜑 ∧ 𝑅 ∈ V ) ∧ ( ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ∧ ( 𝑅 ⊆ 𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) ) ) → ( 𝑅 ↑𝑟 𝑚 ) ⊆ 𝑠 ) ∧ 𝑚 ∈ ℕ0 ) ) ) ) → ( ( 𝜑 ∧ 𝑅 ∈ V ) → ( ( 𝑚 + 1 ) ∈ ℕ0 → ( 𝑅 ↑𝑟 ( 𝑚 + 1 ) ) ⊆ 𝑠 ) ) ) |
78 |
77
|
expcom |
⊢ ( ( 𝑅 ⊆ 𝑠 ∧ ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ∧ ( ( ( 𝑚 ∈ ℕ0 ∧ ( ( 𝜑 ∧ 𝑅 ∈ V ) ∧ ( ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ∧ ( 𝑅 ⊆ 𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) ) ) → ( 𝑅 ↑𝑟 𝑚 ) ⊆ 𝑠 ) ∧ 𝑚 ∈ ℕ0 ) ) ) → ( ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 → ( ( 𝜑 ∧ 𝑅 ∈ V ) → ( ( 𝑚 + 1 ) ∈ ℕ0 → ( 𝑅 ↑𝑟 ( 𝑚 + 1 ) ) ⊆ 𝑠 ) ) ) ) |
79 |
78
|
anassrs |
⊢ ( ( ( 𝑅 ⊆ 𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ∧ ( ( ( 𝑚 ∈ ℕ0 ∧ ( ( 𝜑 ∧ 𝑅 ∈ V ) ∧ ( ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ∧ ( 𝑅 ⊆ 𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) ) ) → ( 𝑅 ↑𝑟 𝑚 ) ⊆ 𝑠 ) ∧ 𝑚 ∈ ℕ0 ) ) → ( ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 → ( ( 𝜑 ∧ 𝑅 ∈ V ) → ( ( 𝑚 + 1 ) ∈ ℕ0 → ( 𝑅 ↑𝑟 ( 𝑚 + 1 ) ) ⊆ 𝑠 ) ) ) ) |
80 |
79
|
impcom |
⊢ ( ( ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ∧ ( ( 𝑅 ⊆ 𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ∧ ( ( ( 𝑚 ∈ ℕ0 ∧ ( ( 𝜑 ∧ 𝑅 ∈ V ) ∧ ( ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ∧ ( 𝑅 ⊆ 𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) ) ) → ( 𝑅 ↑𝑟 𝑚 ) ⊆ 𝑠 ) ∧ 𝑚 ∈ ℕ0 ) ) ) → ( ( 𝜑 ∧ 𝑅 ∈ V ) → ( ( 𝑚 + 1 ) ∈ ℕ0 → ( 𝑅 ↑𝑟 ( 𝑚 + 1 ) ) ⊆ 𝑠 ) ) ) |
81 |
80
|
anassrs |
⊢ ( ( ( ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ∧ ( 𝑅 ⊆ 𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) ∧ ( ( ( 𝑚 ∈ ℕ0 ∧ ( ( 𝜑 ∧ 𝑅 ∈ V ) ∧ ( ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ∧ ( 𝑅 ⊆ 𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) ) ) → ( 𝑅 ↑𝑟 𝑚 ) ⊆ 𝑠 ) ∧ 𝑚 ∈ ℕ0 ) ) → ( ( 𝜑 ∧ 𝑅 ∈ V ) → ( ( 𝑚 + 1 ) ∈ ℕ0 → ( 𝑅 ↑𝑟 ( 𝑚 + 1 ) ) ⊆ 𝑠 ) ) ) |
82 |
81
|
impcom |
⊢ ( ( ( 𝜑 ∧ 𝑅 ∈ V ) ∧ ( ( ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ∧ ( 𝑅 ⊆ 𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) ∧ ( ( ( 𝑚 ∈ ℕ0 ∧ ( ( 𝜑 ∧ 𝑅 ∈ V ) ∧ ( ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ∧ ( 𝑅 ⊆ 𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) ) ) → ( 𝑅 ↑𝑟 𝑚 ) ⊆ 𝑠 ) ∧ 𝑚 ∈ ℕ0 ) ) ) → ( ( 𝑚 + 1 ) ∈ ℕ0 → ( 𝑅 ↑𝑟 ( 𝑚 + 1 ) ) ⊆ 𝑠 ) ) |
83 |
82
|
anassrs |
⊢ ( ( ( ( 𝜑 ∧ 𝑅 ∈ V ) ∧ ( ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ∧ ( 𝑅 ⊆ 𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) ) ∧ ( ( ( 𝑚 ∈ ℕ0 ∧ ( ( 𝜑 ∧ 𝑅 ∈ V ) ∧ ( ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ∧ ( 𝑅 ⊆ 𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) ) ) → ( 𝑅 ↑𝑟 𝑚 ) ⊆ 𝑠 ) ∧ 𝑚 ∈ ℕ0 ) ) → ( ( 𝑚 + 1 ) ∈ ℕ0 → ( 𝑅 ↑𝑟 ( 𝑚 + 1 ) ) ⊆ 𝑠 ) ) |
84 |
83
|
impcom |
⊢ ( ( ( 𝑚 + 1 ) ∈ ℕ0 ∧ ( ( ( 𝜑 ∧ 𝑅 ∈ V ) ∧ ( ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ∧ ( 𝑅 ⊆ 𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) ) ∧ ( ( ( 𝑚 ∈ ℕ0 ∧ ( ( 𝜑 ∧ 𝑅 ∈ V ) ∧ ( ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ∧ ( 𝑅 ⊆ 𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) ) ) → ( 𝑅 ↑𝑟 𝑚 ) ⊆ 𝑠 ) ∧ 𝑚 ∈ ℕ0 ) ) ) → ( 𝑅 ↑𝑟 ( 𝑚 + 1 ) ) ⊆ 𝑠 ) |
85 |
84
|
anassrs |
⊢ ( ( ( ( 𝑚 + 1 ) ∈ ℕ0 ∧ ( ( 𝜑 ∧ 𝑅 ∈ V ) ∧ ( ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ∧ ( 𝑅 ⊆ 𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) ) ) ∧ ( ( ( 𝑚 ∈ ℕ0 ∧ ( ( 𝜑 ∧ 𝑅 ∈ V ) ∧ ( ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ∧ ( 𝑅 ⊆ 𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) ) ) → ( 𝑅 ↑𝑟 𝑚 ) ⊆ 𝑠 ) ∧ 𝑚 ∈ ℕ0 ) ) → ( 𝑅 ↑𝑟 ( 𝑚 + 1 ) ) ⊆ 𝑠 ) |
86 |
85
|
expcom |
⊢ ( ( ( ( 𝑚 ∈ ℕ0 ∧ ( ( 𝜑 ∧ 𝑅 ∈ V ) ∧ ( ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ∧ ( 𝑅 ⊆ 𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) ) ) → ( 𝑅 ↑𝑟 𝑚 ) ⊆ 𝑠 ) ∧ 𝑚 ∈ ℕ0 ) → ( ( ( 𝑚 + 1 ) ∈ ℕ0 ∧ ( ( 𝜑 ∧ 𝑅 ∈ V ) ∧ ( ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ∧ ( 𝑅 ⊆ 𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) ) ) → ( 𝑅 ↑𝑟 ( 𝑚 + 1 ) ) ⊆ 𝑠 ) ) |
87 |
86
|
expcom |
⊢ ( 𝑚 ∈ ℕ0 → ( ( ( 𝑚 ∈ ℕ0 ∧ ( ( 𝜑 ∧ 𝑅 ∈ V ) ∧ ( ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ∧ ( 𝑅 ⊆ 𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) ) ) → ( 𝑅 ↑𝑟 𝑚 ) ⊆ 𝑠 ) → ( ( ( 𝑚 + 1 ) ∈ ℕ0 ∧ ( ( 𝜑 ∧ 𝑅 ∈ V ) ∧ ( ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ∧ ( 𝑅 ⊆ 𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) ) ) → ( 𝑅 ↑𝑟 ( 𝑚 + 1 ) ) ⊆ 𝑠 ) ) ) |
88 |
16 21 26 31 44 87
|
nn0ind |
⊢ ( 𝑛 ∈ ℕ0 → ( ( 𝑛 ∈ ℕ0 ∧ ( ( 𝜑 ∧ 𝑅 ∈ V ) ∧ ( ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ∧ ( 𝑅 ⊆ 𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) ) ) → ( 𝑅 ↑𝑟 𝑛 ) ⊆ 𝑠 ) ) |
89 |
88
|
anabsi5 |
⊢ ( ( 𝑛 ∈ ℕ0 ∧ ( ( 𝜑 ∧ 𝑅 ∈ V ) ∧ ( ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ∧ ( 𝑅 ⊆ 𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) ) ) → ( 𝑅 ↑𝑟 𝑛 ) ⊆ 𝑠 ) |
90 |
89
|
expcom |
⊢ ( ( ( 𝜑 ∧ 𝑅 ∈ V ) ∧ ( ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ∧ ( 𝑅 ⊆ 𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) ) → ( 𝑛 ∈ ℕ0 → ( 𝑅 ↑𝑟 𝑛 ) ⊆ 𝑠 ) ) |
91 |
90
|
ralrimiv |
⊢ ( ( ( 𝜑 ∧ 𝑅 ∈ V ) ∧ ( ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ∧ ( 𝑅 ⊆ 𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) ) → ∀ 𝑛 ∈ ℕ0 ( 𝑅 ↑𝑟 𝑛 ) ⊆ 𝑠 ) |
92 |
|
iunss |
⊢ ( ∪ 𝑛 ∈ ℕ0 ( 𝑅 ↑𝑟 𝑛 ) ⊆ 𝑠 ↔ ∀ 𝑛 ∈ ℕ0 ( 𝑅 ↑𝑟 𝑛 ) ⊆ 𝑠 ) |
93 |
91 92
|
sylibr |
⊢ ( ( ( 𝜑 ∧ 𝑅 ∈ V ) ∧ ( ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ∧ ( 𝑅 ⊆ 𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) ) → ∪ 𝑛 ∈ ℕ0 ( 𝑅 ↑𝑟 𝑛 ) ⊆ 𝑠 ) |
94 |
93
|
expcom |
⊢ ( ( ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ∧ ( 𝑅 ⊆ 𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) → ( ( 𝜑 ∧ 𝑅 ∈ V ) → ∪ 𝑛 ∈ ℕ0 ( 𝑅 ↑𝑟 𝑛 ) ⊆ 𝑠 ) ) |
95 |
94
|
expcom |
⊢ ( ( 𝑅 ⊆ 𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) → ( ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 → ( ( 𝜑 ∧ 𝑅 ∈ V ) → ∪ 𝑛 ∈ ℕ0 ( 𝑅 ↑𝑟 𝑛 ) ⊆ 𝑠 ) ) ) |
96 |
95
|
expcom |
⊢ ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 → ( 𝑅 ⊆ 𝑠 → ( ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 → ( ( 𝜑 ∧ 𝑅 ∈ V ) → ∪ 𝑛 ∈ ℕ0 ( 𝑅 ↑𝑟 𝑛 ) ⊆ 𝑠 ) ) ) ) |
97 |
96
|
3imp1 |
⊢ ( ( ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ∧ 𝑅 ⊆ 𝑠 ∧ ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ) ∧ ( 𝜑 ∧ 𝑅 ∈ V ) ) → ∪ 𝑛 ∈ ℕ0 ( 𝑅 ↑𝑟 𝑛 ) ⊆ 𝑠 ) |
98 |
97
|
expcom |
⊢ ( ( 𝜑 ∧ 𝑅 ∈ V ) → ( ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ∧ 𝑅 ⊆ 𝑠 ∧ ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ) → ∪ 𝑛 ∈ ℕ0 ( 𝑅 ↑𝑟 𝑛 ) ⊆ 𝑠 ) ) |
99 |
|
sseq1 |
⊢ ( ( ( 𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 ( 𝑟 ↑𝑟 𝑛 ) ) ‘ 𝑅 ) = ∪ 𝑛 ∈ ℕ0 ( 𝑅 ↑𝑟 𝑛 ) → ( ( ( 𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 ( 𝑟 ↑𝑟 𝑛 ) ) ‘ 𝑅 ) ⊆ 𝑠 ↔ ∪ 𝑛 ∈ ℕ0 ( 𝑅 ↑𝑟 𝑛 ) ⊆ 𝑠 ) ) |
100 |
99
|
imbi2d |
⊢ ( ( ( 𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 ( 𝑟 ↑𝑟 𝑛 ) ) ‘ 𝑅 ) = ∪ 𝑛 ∈ ℕ0 ( 𝑅 ↑𝑟 𝑛 ) → ( ( ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ∧ 𝑅 ⊆ 𝑠 ∧ ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ) → ( ( 𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 ( 𝑟 ↑𝑟 𝑛 ) ) ‘ 𝑅 ) ⊆ 𝑠 ) ↔ ( ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ∧ 𝑅 ⊆ 𝑠 ∧ ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ) → ∪ 𝑛 ∈ ℕ0 ( 𝑅 ↑𝑟 𝑛 ) ⊆ 𝑠 ) ) ) |
101 |
98 100
|
syl5ibr |
⊢ ( ( ( 𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 ( 𝑟 ↑𝑟 𝑛 ) ) ‘ 𝑅 ) = ∪ 𝑛 ∈ ℕ0 ( 𝑅 ↑𝑟 𝑛 ) → ( ( 𝜑 ∧ 𝑅 ∈ V ) → ( ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ∧ 𝑅 ⊆ 𝑠 ∧ ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ) → ( ( 𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 ( 𝑟 ↑𝑟 𝑛 ) ) ‘ 𝑅 ) ⊆ 𝑠 ) ) ) |
102 |
11 101
|
mpcom |
⊢ ( ( 𝜑 ∧ 𝑅 ∈ V ) → ( ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ∧ 𝑅 ⊆ 𝑠 ∧ ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ) → ( ( 𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 ( 𝑟 ↑𝑟 𝑛 ) ) ‘ 𝑅 ) ⊆ 𝑠 ) ) |
103 |
|
df-rtrclrec |
⊢ t*rec = ( 𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 ( 𝑟 ↑𝑟 𝑛 ) ) |
104 |
|
fveq1 |
⊢ ( t*rec = ( 𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 ( 𝑟 ↑𝑟 𝑛 ) ) → ( t*rec ‘ 𝑅 ) = ( ( 𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 ( 𝑟 ↑𝑟 𝑛 ) ) ‘ 𝑅 ) ) |
105 |
104
|
sseq1d |
⊢ ( t*rec = ( 𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 ( 𝑟 ↑𝑟 𝑛 ) ) → ( ( t*rec ‘ 𝑅 ) ⊆ 𝑠 ↔ ( ( 𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 ( 𝑟 ↑𝑟 𝑛 ) ) ‘ 𝑅 ) ⊆ 𝑠 ) ) |
106 |
105
|
imbi2d |
⊢ ( t*rec = ( 𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 ( 𝑟 ↑𝑟 𝑛 ) ) → ( ( ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ∧ 𝑅 ⊆ 𝑠 ∧ ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ) → ( t*rec ‘ 𝑅 ) ⊆ 𝑠 ) ↔ ( ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ∧ 𝑅 ⊆ 𝑠 ∧ ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ) → ( ( 𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 ( 𝑟 ↑𝑟 𝑛 ) ) ‘ 𝑅 ) ⊆ 𝑠 ) ) ) |
107 |
106
|
imbi2d |
⊢ ( t*rec = ( 𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 ( 𝑟 ↑𝑟 𝑛 ) ) → ( ( ( 𝜑 ∧ 𝑅 ∈ V ) → ( ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ∧ 𝑅 ⊆ 𝑠 ∧ ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ) → ( t*rec ‘ 𝑅 ) ⊆ 𝑠 ) ) ↔ ( ( 𝜑 ∧ 𝑅 ∈ V ) → ( ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ∧ 𝑅 ⊆ 𝑠 ∧ ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ) → ( ( 𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 ( 𝑟 ↑𝑟 𝑛 ) ) ‘ 𝑅 ) ⊆ 𝑠 ) ) ) ) |
108 |
103 107
|
ax-mp |
⊢ ( ( ( 𝜑 ∧ 𝑅 ∈ V ) → ( ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ∧ 𝑅 ⊆ 𝑠 ∧ ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ) → ( t*rec ‘ 𝑅 ) ⊆ 𝑠 ) ) ↔ ( ( 𝜑 ∧ 𝑅 ∈ V ) → ( ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ∧ 𝑅 ⊆ 𝑠 ∧ ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ) → ( ( 𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 ( 𝑟 ↑𝑟 𝑛 ) ) ‘ 𝑅 ) ⊆ 𝑠 ) ) ) |
109 |
102 108
|
mpbir |
⊢ ( ( 𝜑 ∧ 𝑅 ∈ V ) → ( ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ∧ 𝑅 ⊆ 𝑠 ∧ ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ) → ( t*rec ‘ 𝑅 ) ⊆ 𝑠 ) ) |
110 |
109
|
ex |
⊢ ( 𝜑 → ( 𝑅 ∈ V → ( ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ∧ 𝑅 ⊆ 𝑠 ∧ ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ) → ( t*rec ‘ 𝑅 ) ⊆ 𝑠 ) ) ) |
111 |
|
fvprc |
⊢ ( ¬ 𝑅 ∈ V → ( t*rec ‘ 𝑅 ) = ∅ ) |
112 |
|
0ss |
⊢ ∅ ⊆ 𝑠 |
113 |
111 112
|
eqsstrdi |
⊢ ( ¬ 𝑅 ∈ V → ( t*rec ‘ 𝑅 ) ⊆ 𝑠 ) |
114 |
113
|
a1d |
⊢ ( ¬ 𝑅 ∈ V → ( ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ∧ 𝑅 ⊆ 𝑠 ∧ ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ) → ( t*rec ‘ 𝑅 ) ⊆ 𝑠 ) ) |
115 |
110 114
|
pm2.61d1 |
⊢ ( 𝜑 → ( ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ∧ 𝑅 ⊆ 𝑠 ∧ ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ) → ( t*rec ‘ 𝑅 ) ⊆ 𝑠 ) ) |
116 |
115
|
alrimiv |
⊢ ( 𝜑 → ∀ 𝑠 ( ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ∧ 𝑅 ⊆ 𝑠 ∧ ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ) → ( t*rec ‘ 𝑅 ) ⊆ 𝑠 ) ) |