| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rtrclreclem.1 |
⊢ ( 𝜑 → Rel 𝑅 ) |
| 2 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑅 ∈ V ) → ( 𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 ( 𝑟 ↑𝑟 𝑛 ) ) = ( 𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 ( 𝑟 ↑𝑟 𝑛 ) ) ) |
| 3 |
|
oveq1 |
⊢ ( 𝑟 = 𝑅 → ( 𝑟 ↑𝑟 𝑛 ) = ( 𝑅 ↑𝑟 𝑛 ) ) |
| 4 |
3
|
iuneq2d |
⊢ ( 𝑟 = 𝑅 → ∪ 𝑛 ∈ ℕ0 ( 𝑟 ↑𝑟 𝑛 ) = ∪ 𝑛 ∈ ℕ0 ( 𝑅 ↑𝑟 𝑛 ) ) |
| 5 |
4
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑅 ∈ V ) ∧ 𝑟 = 𝑅 ) → ∪ 𝑛 ∈ ℕ0 ( 𝑟 ↑𝑟 𝑛 ) = ∪ 𝑛 ∈ ℕ0 ( 𝑅 ↑𝑟 𝑛 ) ) |
| 6 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑅 ∈ V ) → 𝑅 ∈ V ) |
| 7 |
|
nn0ex |
⊢ ℕ0 ∈ V |
| 8 |
|
ovex |
⊢ ( 𝑅 ↑𝑟 𝑛 ) ∈ V |
| 9 |
7 8
|
iunex |
⊢ ∪ 𝑛 ∈ ℕ0 ( 𝑅 ↑𝑟 𝑛 ) ∈ V |
| 10 |
9
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑅 ∈ V ) → ∪ 𝑛 ∈ ℕ0 ( 𝑅 ↑𝑟 𝑛 ) ∈ V ) |
| 11 |
2 5 6 10
|
fvmptd |
⊢ ( ( 𝜑 ∧ 𝑅 ∈ V ) → ( ( 𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 ( 𝑟 ↑𝑟 𝑛 ) ) ‘ 𝑅 ) = ∪ 𝑛 ∈ ℕ0 ( 𝑅 ↑𝑟 𝑛 ) ) |
| 12 |
|
eleq1 |
⊢ ( 𝑖 = 0 → ( 𝑖 ∈ ℕ0 ↔ 0 ∈ ℕ0 ) ) |
| 13 |
12
|
anbi1d |
⊢ ( 𝑖 = 0 → ( ( 𝑖 ∈ ℕ0 ∧ ( ( 𝜑 ∧ 𝑅 ∈ V ) ∧ ( ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ∧ ( 𝑅 ⊆ 𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) ) ) ↔ ( 0 ∈ ℕ0 ∧ ( ( 𝜑 ∧ 𝑅 ∈ V ) ∧ ( ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ∧ ( 𝑅 ⊆ 𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) ) ) ) ) |
| 14 |
|
oveq2 |
⊢ ( 𝑖 = 0 → ( 𝑅 ↑𝑟 𝑖 ) = ( 𝑅 ↑𝑟 0 ) ) |
| 15 |
14
|
sseq1d |
⊢ ( 𝑖 = 0 → ( ( 𝑅 ↑𝑟 𝑖 ) ⊆ 𝑠 ↔ ( 𝑅 ↑𝑟 0 ) ⊆ 𝑠 ) ) |
| 16 |
13 15
|
imbi12d |
⊢ ( 𝑖 = 0 → ( ( ( 𝑖 ∈ ℕ0 ∧ ( ( 𝜑 ∧ 𝑅 ∈ V ) ∧ ( ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ∧ ( 𝑅 ⊆ 𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) ) ) → ( 𝑅 ↑𝑟 𝑖 ) ⊆ 𝑠 ) ↔ ( ( 0 ∈ ℕ0 ∧ ( ( 𝜑 ∧ 𝑅 ∈ V ) ∧ ( ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ∧ ( 𝑅 ⊆ 𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) ) ) → ( 𝑅 ↑𝑟 0 ) ⊆ 𝑠 ) ) ) |
| 17 |
|
eleq1 |
⊢ ( 𝑖 = 𝑚 → ( 𝑖 ∈ ℕ0 ↔ 𝑚 ∈ ℕ0 ) ) |
| 18 |
17
|
anbi1d |
⊢ ( 𝑖 = 𝑚 → ( ( 𝑖 ∈ ℕ0 ∧ ( ( 𝜑 ∧ 𝑅 ∈ V ) ∧ ( ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ∧ ( 𝑅 ⊆ 𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) ) ) ↔ ( 𝑚 ∈ ℕ0 ∧ ( ( 𝜑 ∧ 𝑅 ∈ V ) ∧ ( ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ∧ ( 𝑅 ⊆ 𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) ) ) ) ) |
| 19 |
|
oveq2 |
⊢ ( 𝑖 = 𝑚 → ( 𝑅 ↑𝑟 𝑖 ) = ( 𝑅 ↑𝑟 𝑚 ) ) |
| 20 |
19
|
sseq1d |
⊢ ( 𝑖 = 𝑚 → ( ( 𝑅 ↑𝑟 𝑖 ) ⊆ 𝑠 ↔ ( 𝑅 ↑𝑟 𝑚 ) ⊆ 𝑠 ) ) |
| 21 |
18 20
|
imbi12d |
⊢ ( 𝑖 = 𝑚 → ( ( ( 𝑖 ∈ ℕ0 ∧ ( ( 𝜑 ∧ 𝑅 ∈ V ) ∧ ( ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ∧ ( 𝑅 ⊆ 𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) ) ) → ( 𝑅 ↑𝑟 𝑖 ) ⊆ 𝑠 ) ↔ ( ( 𝑚 ∈ ℕ0 ∧ ( ( 𝜑 ∧ 𝑅 ∈ V ) ∧ ( ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ∧ ( 𝑅 ⊆ 𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) ) ) → ( 𝑅 ↑𝑟 𝑚 ) ⊆ 𝑠 ) ) ) |
| 22 |
|
eleq1 |
⊢ ( 𝑖 = ( 𝑚 + 1 ) → ( 𝑖 ∈ ℕ0 ↔ ( 𝑚 + 1 ) ∈ ℕ0 ) ) |
| 23 |
22
|
anbi1d |
⊢ ( 𝑖 = ( 𝑚 + 1 ) → ( ( 𝑖 ∈ ℕ0 ∧ ( ( 𝜑 ∧ 𝑅 ∈ V ) ∧ ( ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ∧ ( 𝑅 ⊆ 𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) ) ) ↔ ( ( 𝑚 + 1 ) ∈ ℕ0 ∧ ( ( 𝜑 ∧ 𝑅 ∈ V ) ∧ ( ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ∧ ( 𝑅 ⊆ 𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) ) ) ) ) |
| 24 |
|
oveq2 |
⊢ ( 𝑖 = ( 𝑚 + 1 ) → ( 𝑅 ↑𝑟 𝑖 ) = ( 𝑅 ↑𝑟 ( 𝑚 + 1 ) ) ) |
| 25 |
24
|
sseq1d |
⊢ ( 𝑖 = ( 𝑚 + 1 ) → ( ( 𝑅 ↑𝑟 𝑖 ) ⊆ 𝑠 ↔ ( 𝑅 ↑𝑟 ( 𝑚 + 1 ) ) ⊆ 𝑠 ) ) |
| 26 |
23 25
|
imbi12d |
⊢ ( 𝑖 = ( 𝑚 + 1 ) → ( ( ( 𝑖 ∈ ℕ0 ∧ ( ( 𝜑 ∧ 𝑅 ∈ V ) ∧ ( ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ∧ ( 𝑅 ⊆ 𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) ) ) → ( 𝑅 ↑𝑟 𝑖 ) ⊆ 𝑠 ) ↔ ( ( ( 𝑚 + 1 ) ∈ ℕ0 ∧ ( ( 𝜑 ∧ 𝑅 ∈ V ) ∧ ( ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ∧ ( 𝑅 ⊆ 𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) ) ) → ( 𝑅 ↑𝑟 ( 𝑚 + 1 ) ) ⊆ 𝑠 ) ) ) |
| 27 |
|
eleq1 |
⊢ ( 𝑖 = 𝑛 → ( 𝑖 ∈ ℕ0 ↔ 𝑛 ∈ ℕ0 ) ) |
| 28 |
27
|
anbi1d |
⊢ ( 𝑖 = 𝑛 → ( ( 𝑖 ∈ ℕ0 ∧ ( ( 𝜑 ∧ 𝑅 ∈ V ) ∧ ( ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ∧ ( 𝑅 ⊆ 𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) ) ) ↔ ( 𝑛 ∈ ℕ0 ∧ ( ( 𝜑 ∧ 𝑅 ∈ V ) ∧ ( ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ∧ ( 𝑅 ⊆ 𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) ) ) ) ) |
| 29 |
|
oveq2 |
⊢ ( 𝑖 = 𝑛 → ( 𝑅 ↑𝑟 𝑖 ) = ( 𝑅 ↑𝑟 𝑛 ) ) |
| 30 |
29
|
sseq1d |
⊢ ( 𝑖 = 𝑛 → ( ( 𝑅 ↑𝑟 𝑖 ) ⊆ 𝑠 ↔ ( 𝑅 ↑𝑟 𝑛 ) ⊆ 𝑠 ) ) |
| 31 |
28 30
|
imbi12d |
⊢ ( 𝑖 = 𝑛 → ( ( ( 𝑖 ∈ ℕ0 ∧ ( ( 𝜑 ∧ 𝑅 ∈ V ) ∧ ( ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ∧ ( 𝑅 ⊆ 𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) ) ) → ( 𝑅 ↑𝑟 𝑖 ) ⊆ 𝑠 ) ↔ ( ( 𝑛 ∈ ℕ0 ∧ ( ( 𝜑 ∧ 𝑅 ∈ V ) ∧ ( ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ∧ ( 𝑅 ⊆ 𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) ) ) → ( 𝑅 ↑𝑟 𝑛 ) ⊆ 𝑠 ) ) ) |
| 32 |
|
simprll |
⊢ ( ( 0 ∈ ℕ0 ∧ ( ( 𝜑 ∧ 𝑅 ∈ V ) ∧ ( ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ∧ ( 𝑅 ⊆ 𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) ) ) → 𝜑 ) |
| 33 |
32 1
|
syl |
⊢ ( ( 0 ∈ ℕ0 ∧ ( ( 𝜑 ∧ 𝑅 ∈ V ) ∧ ( ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ∧ ( 𝑅 ⊆ 𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) ) ) → Rel 𝑅 ) |
| 34 |
|
simprlr |
⊢ ( ( 0 ∈ ℕ0 ∧ ( ( 𝜑 ∧ 𝑅 ∈ V ) ∧ ( ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ∧ ( 𝑅 ⊆ 𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) ) ) → 𝑅 ∈ V ) |
| 35 |
33 34
|
relexp0d |
⊢ ( ( 0 ∈ ℕ0 ∧ ( ( 𝜑 ∧ 𝑅 ∈ V ) ∧ ( ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ∧ ( 𝑅 ⊆ 𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) ) ) → ( 𝑅 ↑𝑟 0 ) = ( I ↾ ∪ ∪ 𝑅 ) ) |
| 36 |
|
relfld |
⊢ ( Rel 𝑅 → ∪ ∪ 𝑅 = ( dom 𝑅 ∪ ran 𝑅 ) ) |
| 37 |
33 36
|
syl |
⊢ ( ( 0 ∈ ℕ0 ∧ ( ( 𝜑 ∧ 𝑅 ∈ V ) ∧ ( ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ∧ ( 𝑅 ⊆ 𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) ) ) → ∪ ∪ 𝑅 = ( dom 𝑅 ∪ ran 𝑅 ) ) |
| 38 |
|
simprrr |
⊢ ( ( ( 𝜑 ∧ 𝑅 ∈ V ) ∧ ( ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ∧ ( 𝑅 ⊆ 𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) ) → ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) |
| 39 |
38
|
adantl |
⊢ ( ( 0 ∈ ℕ0 ∧ ( ( 𝜑 ∧ 𝑅 ∈ V ) ∧ ( ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ∧ ( 𝑅 ⊆ 𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) ) ) → ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) |
| 40 |
|
reseq2 |
⊢ ( ∪ ∪ 𝑅 = ( dom 𝑅 ∪ ran 𝑅 ) → ( I ↾ ∪ ∪ 𝑅 ) = ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ) |
| 41 |
40
|
sseq1d |
⊢ ( ∪ ∪ 𝑅 = ( dom 𝑅 ∪ ran 𝑅 ) → ( ( I ↾ ∪ ∪ 𝑅 ) ⊆ 𝑠 ↔ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) |
| 42 |
39 41
|
imbitrrid |
⊢ ( ∪ ∪ 𝑅 = ( dom 𝑅 ∪ ran 𝑅 ) → ( ( 0 ∈ ℕ0 ∧ ( ( 𝜑 ∧ 𝑅 ∈ V ) ∧ ( ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ∧ ( 𝑅 ⊆ 𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) ) ) → ( I ↾ ∪ ∪ 𝑅 ) ⊆ 𝑠 ) ) |
| 43 |
37 42
|
mpcom |
⊢ ( ( 0 ∈ ℕ0 ∧ ( ( 𝜑 ∧ 𝑅 ∈ V ) ∧ ( ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ∧ ( 𝑅 ⊆ 𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) ) ) → ( I ↾ ∪ ∪ 𝑅 ) ⊆ 𝑠 ) |
| 44 |
35 43
|
eqsstrd |
⊢ ( ( 0 ∈ ℕ0 ∧ ( ( 𝜑 ∧ 𝑅 ∈ V ) ∧ ( ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ∧ ( 𝑅 ⊆ 𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) ) ) → ( 𝑅 ↑𝑟 0 ) ⊆ 𝑠 ) |
| 45 |
|
simprrr |
⊢ ( ( 𝑅 ⊆ 𝑠 ∧ ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ∧ ( ( ( 𝑚 ∈ ℕ0 ∧ ( ( 𝜑 ∧ 𝑅 ∈ V ) ∧ ( ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ∧ ( 𝑅 ⊆ 𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) ) ) → ( 𝑅 ↑𝑟 𝑚 ) ⊆ 𝑠 ) ∧ 𝑚 ∈ ℕ0 ) ) ) → 𝑚 ∈ ℕ0 ) |
| 46 |
45
|
adantl |
⊢ ( ( ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ∧ ( 𝑅 ⊆ 𝑠 ∧ ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ∧ ( ( ( 𝑚 ∈ ℕ0 ∧ ( ( 𝜑 ∧ 𝑅 ∈ V ) ∧ ( ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ∧ ( 𝑅 ⊆ 𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) ) ) → ( 𝑅 ↑𝑟 𝑚 ) ⊆ 𝑠 ) ∧ 𝑚 ∈ ℕ0 ) ) ) ) → 𝑚 ∈ ℕ0 ) |
| 47 |
46
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑅 ∈ V ) ∧ ( ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ∧ ( 𝑅 ⊆ 𝑠 ∧ ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ∧ ( ( ( 𝑚 ∈ ℕ0 ∧ ( ( 𝜑 ∧ 𝑅 ∈ V ) ∧ ( ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ∧ ( 𝑅 ⊆ 𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) ) ) → ( 𝑅 ↑𝑟 𝑚 ) ⊆ 𝑠 ) ∧ 𝑚 ∈ ℕ0 ) ) ) ) ) → 𝑚 ∈ ℕ0 ) |
| 48 |
47
|
adantl |
⊢ ( ( ( 𝑚 + 1 ) ∈ ℕ0 ∧ ( ( 𝜑 ∧ 𝑅 ∈ V ) ∧ ( ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ∧ ( 𝑅 ⊆ 𝑠 ∧ ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ∧ ( ( ( 𝑚 ∈ ℕ0 ∧ ( ( 𝜑 ∧ 𝑅 ∈ V ) ∧ ( ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ∧ ( 𝑅 ⊆ 𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) ) ) → ( 𝑅 ↑𝑟 𝑚 ) ⊆ 𝑠 ) ∧ 𝑚 ∈ ℕ0 ) ) ) ) ) ) → 𝑚 ∈ ℕ0 ) |
| 49 |
|
simprl |
⊢ ( ( ( 𝑚 + 1 ) ∈ ℕ0 ∧ ( ( 𝜑 ∧ 𝑅 ∈ V ) ∧ ( ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ∧ ( 𝑅 ⊆ 𝑠 ∧ ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ∧ ( ( ( 𝑚 ∈ ℕ0 ∧ ( ( 𝜑 ∧ 𝑅 ∈ V ) ∧ ( ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ∧ ( 𝑅 ⊆ 𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) ) ) → ( 𝑅 ↑𝑟 𝑚 ) ⊆ 𝑠 ) ∧ 𝑚 ∈ ℕ0 ) ) ) ) ) ) → ( 𝜑 ∧ 𝑅 ∈ V ) ) |
| 50 |
|
simprrl |
⊢ ( ( ( 𝑚 + 1 ) ∈ ℕ0 ∧ ( ( 𝜑 ∧ 𝑅 ∈ V ) ∧ ( ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ∧ ( 𝑅 ⊆ 𝑠 ∧ ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ∧ ( ( ( 𝑚 ∈ ℕ0 ∧ ( ( 𝜑 ∧ 𝑅 ∈ V ) ∧ ( ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ∧ ( 𝑅 ⊆ 𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) ) ) → ( 𝑅 ↑𝑟 𝑚 ) ⊆ 𝑠 ) ∧ 𝑚 ∈ ℕ0 ) ) ) ) ) ) → ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ) |
| 51 |
|
simprrl |
⊢ ( ( ( 𝜑 ∧ 𝑅 ∈ V ) ∧ ( ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ∧ ( 𝑅 ⊆ 𝑠 ∧ ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ∧ ( ( ( 𝑚 ∈ ℕ0 ∧ ( ( 𝜑 ∧ 𝑅 ∈ V ) ∧ ( ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ∧ ( 𝑅 ⊆ 𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) ) ) → ( 𝑅 ↑𝑟 𝑚 ) ⊆ 𝑠 ) ∧ 𝑚 ∈ ℕ0 ) ) ) ) ) → 𝑅 ⊆ 𝑠 ) |
| 52 |
51
|
adantl |
⊢ ( ( ( 𝑚 + 1 ) ∈ ℕ0 ∧ ( ( 𝜑 ∧ 𝑅 ∈ V ) ∧ ( ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ∧ ( 𝑅 ⊆ 𝑠 ∧ ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ∧ ( ( ( 𝑚 ∈ ℕ0 ∧ ( ( 𝜑 ∧ 𝑅 ∈ V ) ∧ ( ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ∧ ( 𝑅 ⊆ 𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) ) ) → ( 𝑅 ↑𝑟 𝑚 ) ⊆ 𝑠 ) ∧ 𝑚 ∈ ℕ0 ) ) ) ) ) ) → 𝑅 ⊆ 𝑠 ) |
| 53 |
|
simprrl |
⊢ ( ( ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ∧ ( 𝑅 ⊆ 𝑠 ∧ ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ∧ ( ( ( 𝑚 ∈ ℕ0 ∧ ( ( 𝜑 ∧ 𝑅 ∈ V ) ∧ ( ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ∧ ( 𝑅 ⊆ 𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) ) ) → ( 𝑅 ↑𝑟 𝑚 ) ⊆ 𝑠 ) ∧ 𝑚 ∈ ℕ0 ) ) ) ) → ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) |
| 54 |
53
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑅 ∈ V ) ∧ ( ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ∧ ( 𝑅 ⊆ 𝑠 ∧ ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ∧ ( ( ( 𝑚 ∈ ℕ0 ∧ ( ( 𝜑 ∧ 𝑅 ∈ V ) ∧ ( ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ∧ ( 𝑅 ⊆ 𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) ) ) → ( 𝑅 ↑𝑟 𝑚 ) ⊆ 𝑠 ) ∧ 𝑚 ∈ ℕ0 ) ) ) ) ) → ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) |
| 55 |
54
|
adantl |
⊢ ( ( ( 𝑚 + 1 ) ∈ ℕ0 ∧ ( ( 𝜑 ∧ 𝑅 ∈ V ) ∧ ( ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ∧ ( 𝑅 ⊆ 𝑠 ∧ ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ∧ ( ( ( 𝑚 ∈ ℕ0 ∧ ( ( 𝜑 ∧ 𝑅 ∈ V ) ∧ ( ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ∧ ( 𝑅 ⊆ 𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) ) ) → ( 𝑅 ↑𝑟 𝑚 ) ⊆ 𝑠 ) ∧ 𝑚 ∈ ℕ0 ) ) ) ) ) ) → ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) |
| 56 |
50 52 55
|
jca32 |
⊢ ( ( ( 𝑚 + 1 ) ∈ ℕ0 ∧ ( ( 𝜑 ∧ 𝑅 ∈ V ) ∧ ( ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ∧ ( 𝑅 ⊆ 𝑠 ∧ ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ∧ ( ( ( 𝑚 ∈ ℕ0 ∧ ( ( 𝜑 ∧ 𝑅 ∈ V ) ∧ ( ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ∧ ( 𝑅 ⊆ 𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) ) ) → ( 𝑅 ↑𝑟 𝑚 ) ⊆ 𝑠 ) ∧ 𝑚 ∈ ℕ0 ) ) ) ) ) ) → ( ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ∧ ( 𝑅 ⊆ 𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) ) |
| 57 |
48 49 56
|
jca32 |
⊢ ( ( ( 𝑚 + 1 ) ∈ ℕ0 ∧ ( ( 𝜑 ∧ 𝑅 ∈ V ) ∧ ( ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ∧ ( 𝑅 ⊆ 𝑠 ∧ ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ∧ ( ( ( 𝑚 ∈ ℕ0 ∧ ( ( 𝜑 ∧ 𝑅 ∈ V ) ∧ ( ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ∧ ( 𝑅 ⊆ 𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) ) ) → ( 𝑅 ↑𝑟 𝑚 ) ⊆ 𝑠 ) ∧ 𝑚 ∈ ℕ0 ) ) ) ) ) ) → ( 𝑚 ∈ ℕ0 ∧ ( ( 𝜑 ∧ 𝑅 ∈ V ) ∧ ( ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ∧ ( 𝑅 ⊆ 𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) ) ) ) |
| 58 |
|
simprrl |
⊢ ( ( 𝑅 ⊆ 𝑠 ∧ ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ∧ ( ( ( 𝑚 ∈ ℕ0 ∧ ( ( 𝜑 ∧ 𝑅 ∈ V ) ∧ ( ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ∧ ( 𝑅 ⊆ 𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) ) ) → ( 𝑅 ↑𝑟 𝑚 ) ⊆ 𝑠 ) ∧ 𝑚 ∈ ℕ0 ) ) ) → ( ( 𝑚 ∈ ℕ0 ∧ ( ( 𝜑 ∧ 𝑅 ∈ V ) ∧ ( ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ∧ ( 𝑅 ⊆ 𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) ) ) → ( 𝑅 ↑𝑟 𝑚 ) ⊆ 𝑠 ) ) |
| 59 |
58
|
adantl |
⊢ ( ( ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ∧ ( 𝑅 ⊆ 𝑠 ∧ ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ∧ ( ( ( 𝑚 ∈ ℕ0 ∧ ( ( 𝜑 ∧ 𝑅 ∈ V ) ∧ ( ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ∧ ( 𝑅 ⊆ 𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) ) ) → ( 𝑅 ↑𝑟 𝑚 ) ⊆ 𝑠 ) ∧ 𝑚 ∈ ℕ0 ) ) ) ) → ( ( 𝑚 ∈ ℕ0 ∧ ( ( 𝜑 ∧ 𝑅 ∈ V ) ∧ ( ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ∧ ( 𝑅 ⊆ 𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) ) ) → ( 𝑅 ↑𝑟 𝑚 ) ⊆ 𝑠 ) ) |
| 60 |
59
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑅 ∈ V ) ∧ ( ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ∧ ( 𝑅 ⊆ 𝑠 ∧ ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ∧ ( ( ( 𝑚 ∈ ℕ0 ∧ ( ( 𝜑 ∧ 𝑅 ∈ V ) ∧ ( ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ∧ ( 𝑅 ⊆ 𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) ) ) → ( 𝑅 ↑𝑟 𝑚 ) ⊆ 𝑠 ) ∧ 𝑚 ∈ ℕ0 ) ) ) ) ) → ( ( 𝑚 ∈ ℕ0 ∧ ( ( 𝜑 ∧ 𝑅 ∈ V ) ∧ ( ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ∧ ( 𝑅 ⊆ 𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) ) ) → ( 𝑅 ↑𝑟 𝑚 ) ⊆ 𝑠 ) ) |
| 61 |
60
|
adantl |
⊢ ( ( ( 𝑚 + 1 ) ∈ ℕ0 ∧ ( ( 𝜑 ∧ 𝑅 ∈ V ) ∧ ( ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ∧ ( 𝑅 ⊆ 𝑠 ∧ ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ∧ ( ( ( 𝑚 ∈ ℕ0 ∧ ( ( 𝜑 ∧ 𝑅 ∈ V ) ∧ ( ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ∧ ( 𝑅 ⊆ 𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) ) ) → ( 𝑅 ↑𝑟 𝑚 ) ⊆ 𝑠 ) ∧ 𝑚 ∈ ℕ0 ) ) ) ) ) ) → ( ( 𝑚 ∈ ℕ0 ∧ ( ( 𝜑 ∧ 𝑅 ∈ V ) ∧ ( ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ∧ ( 𝑅 ⊆ 𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) ) ) → ( 𝑅 ↑𝑟 𝑚 ) ⊆ 𝑠 ) ) |
| 62 |
57 61
|
mpd |
⊢ ( ( ( 𝑚 + 1 ) ∈ ℕ0 ∧ ( ( 𝜑 ∧ 𝑅 ∈ V ) ∧ ( ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ∧ ( 𝑅 ⊆ 𝑠 ∧ ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ∧ ( ( ( 𝑚 ∈ ℕ0 ∧ ( ( 𝜑 ∧ 𝑅 ∈ V ) ∧ ( ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ∧ ( 𝑅 ⊆ 𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) ) ) → ( 𝑅 ↑𝑟 𝑚 ) ⊆ 𝑠 ) ∧ 𝑚 ∈ ℕ0 ) ) ) ) ) ) → ( 𝑅 ↑𝑟 𝑚 ) ⊆ 𝑠 ) |
| 63 |
|
simprll |
⊢ ( ( ( 𝑚 + 1 ) ∈ ℕ0 ∧ ( ( 𝜑 ∧ 𝑅 ∈ V ) ∧ ( ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ∧ ( 𝑅 ⊆ 𝑠 ∧ ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ∧ ( ( ( 𝑚 ∈ ℕ0 ∧ ( ( 𝜑 ∧ 𝑅 ∈ V ) ∧ ( ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ∧ ( 𝑅 ⊆ 𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) ) ) → ( 𝑅 ↑𝑟 𝑚 ) ⊆ 𝑠 ) ∧ 𝑚 ∈ ℕ0 ) ) ) ) ) ) → 𝜑 ) |
| 64 |
63
|
adantl |
⊢ ( ( ( 𝑅 ↑𝑟 𝑚 ) ⊆ 𝑠 ∧ ( ( 𝑚 + 1 ) ∈ ℕ0 ∧ ( ( 𝜑 ∧ 𝑅 ∈ V ) ∧ ( ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ∧ ( 𝑅 ⊆ 𝑠 ∧ ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ∧ ( ( ( 𝑚 ∈ ℕ0 ∧ ( ( 𝜑 ∧ 𝑅 ∈ V ) ∧ ( ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ∧ ( 𝑅 ⊆ 𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) ) ) → ( 𝑅 ↑𝑟 𝑚 ) ⊆ 𝑠 ) ∧ 𝑚 ∈ ℕ0 ) ) ) ) ) ) ) → 𝜑 ) |
| 65 |
64 1
|
syl |
⊢ ( ( ( 𝑅 ↑𝑟 𝑚 ) ⊆ 𝑠 ∧ ( ( 𝑚 + 1 ) ∈ ℕ0 ∧ ( ( 𝜑 ∧ 𝑅 ∈ V ) ∧ ( ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ∧ ( 𝑅 ⊆ 𝑠 ∧ ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ∧ ( ( ( 𝑚 ∈ ℕ0 ∧ ( ( 𝜑 ∧ 𝑅 ∈ V ) ∧ ( ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ∧ ( 𝑅 ⊆ 𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) ) ) → ( 𝑅 ↑𝑟 𝑚 ) ⊆ 𝑠 ) ∧ 𝑚 ∈ ℕ0 ) ) ) ) ) ) ) → Rel 𝑅 ) |
| 66 |
48
|
adantl |
⊢ ( ( ( 𝑅 ↑𝑟 𝑚 ) ⊆ 𝑠 ∧ ( ( 𝑚 + 1 ) ∈ ℕ0 ∧ ( ( 𝜑 ∧ 𝑅 ∈ V ) ∧ ( ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ∧ ( 𝑅 ⊆ 𝑠 ∧ ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ∧ ( ( ( 𝑚 ∈ ℕ0 ∧ ( ( 𝜑 ∧ 𝑅 ∈ V ) ∧ ( ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ∧ ( 𝑅 ⊆ 𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) ) ) → ( 𝑅 ↑𝑟 𝑚 ) ⊆ 𝑠 ) ∧ 𝑚 ∈ ℕ0 ) ) ) ) ) ) ) → 𝑚 ∈ ℕ0 ) |
| 67 |
65 66
|
relexpsucrd |
⊢ ( ( ( 𝑅 ↑𝑟 𝑚 ) ⊆ 𝑠 ∧ ( ( 𝑚 + 1 ) ∈ ℕ0 ∧ ( ( 𝜑 ∧ 𝑅 ∈ V ) ∧ ( ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ∧ ( 𝑅 ⊆ 𝑠 ∧ ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ∧ ( ( ( 𝑚 ∈ ℕ0 ∧ ( ( 𝜑 ∧ 𝑅 ∈ V ) ∧ ( ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ∧ ( 𝑅 ⊆ 𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) ) ) → ( 𝑅 ↑𝑟 𝑚 ) ⊆ 𝑠 ) ∧ 𝑚 ∈ ℕ0 ) ) ) ) ) ) ) → ( 𝑅 ↑𝑟 ( 𝑚 + 1 ) ) = ( ( 𝑅 ↑𝑟 𝑚 ) ∘ 𝑅 ) ) |
| 68 |
52
|
adantl |
⊢ ( ( ( 𝑅 ↑𝑟 𝑚 ) ⊆ 𝑠 ∧ ( ( 𝑚 + 1 ) ∈ ℕ0 ∧ ( ( 𝜑 ∧ 𝑅 ∈ V ) ∧ ( ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ∧ ( 𝑅 ⊆ 𝑠 ∧ ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ∧ ( ( ( 𝑚 ∈ ℕ0 ∧ ( ( 𝜑 ∧ 𝑅 ∈ V ) ∧ ( ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ∧ ( 𝑅 ⊆ 𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) ) ) → ( 𝑅 ↑𝑟 𝑚 ) ⊆ 𝑠 ) ∧ 𝑚 ∈ ℕ0 ) ) ) ) ) ) ) → 𝑅 ⊆ 𝑠 ) |
| 69 |
|
coss2 |
⊢ ( 𝑅 ⊆ 𝑠 → ( ( 𝑅 ↑𝑟 𝑚 ) ∘ 𝑅 ) ⊆ ( ( 𝑅 ↑𝑟 𝑚 ) ∘ 𝑠 ) ) |
| 70 |
68 69
|
syl |
⊢ ( ( ( 𝑅 ↑𝑟 𝑚 ) ⊆ 𝑠 ∧ ( ( 𝑚 + 1 ) ∈ ℕ0 ∧ ( ( 𝜑 ∧ 𝑅 ∈ V ) ∧ ( ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ∧ ( 𝑅 ⊆ 𝑠 ∧ ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ∧ ( ( ( 𝑚 ∈ ℕ0 ∧ ( ( 𝜑 ∧ 𝑅 ∈ V ) ∧ ( ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ∧ ( 𝑅 ⊆ 𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) ) ) → ( 𝑅 ↑𝑟 𝑚 ) ⊆ 𝑠 ) ∧ 𝑚 ∈ ℕ0 ) ) ) ) ) ) ) → ( ( 𝑅 ↑𝑟 𝑚 ) ∘ 𝑅 ) ⊆ ( ( 𝑅 ↑𝑟 𝑚 ) ∘ 𝑠 ) ) |
| 71 |
|
coss1 |
⊢ ( ( 𝑅 ↑𝑟 𝑚 ) ⊆ 𝑠 → ( ( 𝑅 ↑𝑟 𝑚 ) ∘ 𝑠 ) ⊆ ( 𝑠 ∘ 𝑠 ) ) |
| 72 |
71 50
|
sylan9ss |
⊢ ( ( ( 𝑅 ↑𝑟 𝑚 ) ⊆ 𝑠 ∧ ( ( 𝑚 + 1 ) ∈ ℕ0 ∧ ( ( 𝜑 ∧ 𝑅 ∈ V ) ∧ ( ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ∧ ( 𝑅 ⊆ 𝑠 ∧ ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ∧ ( ( ( 𝑚 ∈ ℕ0 ∧ ( ( 𝜑 ∧ 𝑅 ∈ V ) ∧ ( ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ∧ ( 𝑅 ⊆ 𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) ) ) → ( 𝑅 ↑𝑟 𝑚 ) ⊆ 𝑠 ) ∧ 𝑚 ∈ ℕ0 ) ) ) ) ) ) ) → ( ( 𝑅 ↑𝑟 𝑚 ) ∘ 𝑠 ) ⊆ 𝑠 ) |
| 73 |
70 72
|
sstrd |
⊢ ( ( ( 𝑅 ↑𝑟 𝑚 ) ⊆ 𝑠 ∧ ( ( 𝑚 + 1 ) ∈ ℕ0 ∧ ( ( 𝜑 ∧ 𝑅 ∈ V ) ∧ ( ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ∧ ( 𝑅 ⊆ 𝑠 ∧ ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ∧ ( ( ( 𝑚 ∈ ℕ0 ∧ ( ( 𝜑 ∧ 𝑅 ∈ V ) ∧ ( ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ∧ ( 𝑅 ⊆ 𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) ) ) → ( 𝑅 ↑𝑟 𝑚 ) ⊆ 𝑠 ) ∧ 𝑚 ∈ ℕ0 ) ) ) ) ) ) ) → ( ( 𝑅 ↑𝑟 𝑚 ) ∘ 𝑅 ) ⊆ 𝑠 ) |
| 74 |
67 73
|
eqsstrd |
⊢ ( ( ( 𝑅 ↑𝑟 𝑚 ) ⊆ 𝑠 ∧ ( ( 𝑚 + 1 ) ∈ ℕ0 ∧ ( ( 𝜑 ∧ 𝑅 ∈ V ) ∧ ( ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ∧ ( 𝑅 ⊆ 𝑠 ∧ ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ∧ ( ( ( 𝑚 ∈ ℕ0 ∧ ( ( 𝜑 ∧ 𝑅 ∈ V ) ∧ ( ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ∧ ( 𝑅 ⊆ 𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) ) ) → ( 𝑅 ↑𝑟 𝑚 ) ⊆ 𝑠 ) ∧ 𝑚 ∈ ℕ0 ) ) ) ) ) ) ) → ( 𝑅 ↑𝑟 ( 𝑚 + 1 ) ) ⊆ 𝑠 ) |
| 75 |
62 74
|
mpancom |
⊢ ( ( ( 𝑚 + 1 ) ∈ ℕ0 ∧ ( ( 𝜑 ∧ 𝑅 ∈ V ) ∧ ( ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ∧ ( 𝑅 ⊆ 𝑠 ∧ ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ∧ ( ( ( 𝑚 ∈ ℕ0 ∧ ( ( 𝜑 ∧ 𝑅 ∈ V ) ∧ ( ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ∧ ( 𝑅 ⊆ 𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) ) ) → ( 𝑅 ↑𝑟 𝑚 ) ⊆ 𝑠 ) ∧ 𝑚 ∈ ℕ0 ) ) ) ) ) ) → ( 𝑅 ↑𝑟 ( 𝑚 + 1 ) ) ⊆ 𝑠 ) |
| 76 |
75
|
expcom |
⊢ ( ( ( 𝜑 ∧ 𝑅 ∈ V ) ∧ ( ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ∧ ( 𝑅 ⊆ 𝑠 ∧ ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ∧ ( ( ( 𝑚 ∈ ℕ0 ∧ ( ( 𝜑 ∧ 𝑅 ∈ V ) ∧ ( ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ∧ ( 𝑅 ⊆ 𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) ) ) → ( 𝑅 ↑𝑟 𝑚 ) ⊆ 𝑠 ) ∧ 𝑚 ∈ ℕ0 ) ) ) ) ) → ( ( 𝑚 + 1 ) ∈ ℕ0 → ( 𝑅 ↑𝑟 ( 𝑚 + 1 ) ) ⊆ 𝑠 ) ) |
| 77 |
76
|
expcom |
⊢ ( ( ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ∧ ( 𝑅 ⊆ 𝑠 ∧ ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ∧ ( ( ( 𝑚 ∈ ℕ0 ∧ ( ( 𝜑 ∧ 𝑅 ∈ V ) ∧ ( ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ∧ ( 𝑅 ⊆ 𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) ) ) → ( 𝑅 ↑𝑟 𝑚 ) ⊆ 𝑠 ) ∧ 𝑚 ∈ ℕ0 ) ) ) ) → ( ( 𝜑 ∧ 𝑅 ∈ V ) → ( ( 𝑚 + 1 ) ∈ ℕ0 → ( 𝑅 ↑𝑟 ( 𝑚 + 1 ) ) ⊆ 𝑠 ) ) ) |
| 78 |
77
|
expcom |
⊢ ( ( 𝑅 ⊆ 𝑠 ∧ ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ∧ ( ( ( 𝑚 ∈ ℕ0 ∧ ( ( 𝜑 ∧ 𝑅 ∈ V ) ∧ ( ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ∧ ( 𝑅 ⊆ 𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) ) ) → ( 𝑅 ↑𝑟 𝑚 ) ⊆ 𝑠 ) ∧ 𝑚 ∈ ℕ0 ) ) ) → ( ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 → ( ( 𝜑 ∧ 𝑅 ∈ V ) → ( ( 𝑚 + 1 ) ∈ ℕ0 → ( 𝑅 ↑𝑟 ( 𝑚 + 1 ) ) ⊆ 𝑠 ) ) ) ) |
| 79 |
78
|
anassrs |
⊢ ( ( ( 𝑅 ⊆ 𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ∧ ( ( ( 𝑚 ∈ ℕ0 ∧ ( ( 𝜑 ∧ 𝑅 ∈ V ) ∧ ( ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ∧ ( 𝑅 ⊆ 𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) ) ) → ( 𝑅 ↑𝑟 𝑚 ) ⊆ 𝑠 ) ∧ 𝑚 ∈ ℕ0 ) ) → ( ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 → ( ( 𝜑 ∧ 𝑅 ∈ V ) → ( ( 𝑚 + 1 ) ∈ ℕ0 → ( 𝑅 ↑𝑟 ( 𝑚 + 1 ) ) ⊆ 𝑠 ) ) ) ) |
| 80 |
79
|
impcom |
⊢ ( ( ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ∧ ( ( 𝑅 ⊆ 𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ∧ ( ( ( 𝑚 ∈ ℕ0 ∧ ( ( 𝜑 ∧ 𝑅 ∈ V ) ∧ ( ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ∧ ( 𝑅 ⊆ 𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) ) ) → ( 𝑅 ↑𝑟 𝑚 ) ⊆ 𝑠 ) ∧ 𝑚 ∈ ℕ0 ) ) ) → ( ( 𝜑 ∧ 𝑅 ∈ V ) → ( ( 𝑚 + 1 ) ∈ ℕ0 → ( 𝑅 ↑𝑟 ( 𝑚 + 1 ) ) ⊆ 𝑠 ) ) ) |
| 81 |
80
|
anassrs |
⊢ ( ( ( ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ∧ ( 𝑅 ⊆ 𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) ∧ ( ( ( 𝑚 ∈ ℕ0 ∧ ( ( 𝜑 ∧ 𝑅 ∈ V ) ∧ ( ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ∧ ( 𝑅 ⊆ 𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) ) ) → ( 𝑅 ↑𝑟 𝑚 ) ⊆ 𝑠 ) ∧ 𝑚 ∈ ℕ0 ) ) → ( ( 𝜑 ∧ 𝑅 ∈ V ) → ( ( 𝑚 + 1 ) ∈ ℕ0 → ( 𝑅 ↑𝑟 ( 𝑚 + 1 ) ) ⊆ 𝑠 ) ) ) |
| 82 |
81
|
impcom |
⊢ ( ( ( 𝜑 ∧ 𝑅 ∈ V ) ∧ ( ( ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ∧ ( 𝑅 ⊆ 𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) ∧ ( ( ( 𝑚 ∈ ℕ0 ∧ ( ( 𝜑 ∧ 𝑅 ∈ V ) ∧ ( ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ∧ ( 𝑅 ⊆ 𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) ) ) → ( 𝑅 ↑𝑟 𝑚 ) ⊆ 𝑠 ) ∧ 𝑚 ∈ ℕ0 ) ) ) → ( ( 𝑚 + 1 ) ∈ ℕ0 → ( 𝑅 ↑𝑟 ( 𝑚 + 1 ) ) ⊆ 𝑠 ) ) |
| 83 |
82
|
anassrs |
⊢ ( ( ( ( 𝜑 ∧ 𝑅 ∈ V ) ∧ ( ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ∧ ( 𝑅 ⊆ 𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) ) ∧ ( ( ( 𝑚 ∈ ℕ0 ∧ ( ( 𝜑 ∧ 𝑅 ∈ V ) ∧ ( ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ∧ ( 𝑅 ⊆ 𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) ) ) → ( 𝑅 ↑𝑟 𝑚 ) ⊆ 𝑠 ) ∧ 𝑚 ∈ ℕ0 ) ) → ( ( 𝑚 + 1 ) ∈ ℕ0 → ( 𝑅 ↑𝑟 ( 𝑚 + 1 ) ) ⊆ 𝑠 ) ) |
| 84 |
83
|
impcom |
⊢ ( ( ( 𝑚 + 1 ) ∈ ℕ0 ∧ ( ( ( 𝜑 ∧ 𝑅 ∈ V ) ∧ ( ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ∧ ( 𝑅 ⊆ 𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) ) ∧ ( ( ( 𝑚 ∈ ℕ0 ∧ ( ( 𝜑 ∧ 𝑅 ∈ V ) ∧ ( ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ∧ ( 𝑅 ⊆ 𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) ) ) → ( 𝑅 ↑𝑟 𝑚 ) ⊆ 𝑠 ) ∧ 𝑚 ∈ ℕ0 ) ) ) → ( 𝑅 ↑𝑟 ( 𝑚 + 1 ) ) ⊆ 𝑠 ) |
| 85 |
84
|
anassrs |
⊢ ( ( ( ( 𝑚 + 1 ) ∈ ℕ0 ∧ ( ( 𝜑 ∧ 𝑅 ∈ V ) ∧ ( ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ∧ ( 𝑅 ⊆ 𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) ) ) ∧ ( ( ( 𝑚 ∈ ℕ0 ∧ ( ( 𝜑 ∧ 𝑅 ∈ V ) ∧ ( ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ∧ ( 𝑅 ⊆ 𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) ) ) → ( 𝑅 ↑𝑟 𝑚 ) ⊆ 𝑠 ) ∧ 𝑚 ∈ ℕ0 ) ) → ( 𝑅 ↑𝑟 ( 𝑚 + 1 ) ) ⊆ 𝑠 ) |
| 86 |
85
|
expcom |
⊢ ( ( ( ( 𝑚 ∈ ℕ0 ∧ ( ( 𝜑 ∧ 𝑅 ∈ V ) ∧ ( ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ∧ ( 𝑅 ⊆ 𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) ) ) → ( 𝑅 ↑𝑟 𝑚 ) ⊆ 𝑠 ) ∧ 𝑚 ∈ ℕ0 ) → ( ( ( 𝑚 + 1 ) ∈ ℕ0 ∧ ( ( 𝜑 ∧ 𝑅 ∈ V ) ∧ ( ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ∧ ( 𝑅 ⊆ 𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) ) ) → ( 𝑅 ↑𝑟 ( 𝑚 + 1 ) ) ⊆ 𝑠 ) ) |
| 87 |
86
|
expcom |
⊢ ( 𝑚 ∈ ℕ0 → ( ( ( 𝑚 ∈ ℕ0 ∧ ( ( 𝜑 ∧ 𝑅 ∈ V ) ∧ ( ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ∧ ( 𝑅 ⊆ 𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) ) ) → ( 𝑅 ↑𝑟 𝑚 ) ⊆ 𝑠 ) → ( ( ( 𝑚 + 1 ) ∈ ℕ0 ∧ ( ( 𝜑 ∧ 𝑅 ∈ V ) ∧ ( ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ∧ ( 𝑅 ⊆ 𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) ) ) → ( 𝑅 ↑𝑟 ( 𝑚 + 1 ) ) ⊆ 𝑠 ) ) ) |
| 88 |
16 21 26 31 44 87
|
nn0ind |
⊢ ( 𝑛 ∈ ℕ0 → ( ( 𝑛 ∈ ℕ0 ∧ ( ( 𝜑 ∧ 𝑅 ∈ V ) ∧ ( ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ∧ ( 𝑅 ⊆ 𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) ) ) → ( 𝑅 ↑𝑟 𝑛 ) ⊆ 𝑠 ) ) |
| 89 |
88
|
anabsi5 |
⊢ ( ( 𝑛 ∈ ℕ0 ∧ ( ( 𝜑 ∧ 𝑅 ∈ V ) ∧ ( ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ∧ ( 𝑅 ⊆ 𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) ) ) → ( 𝑅 ↑𝑟 𝑛 ) ⊆ 𝑠 ) |
| 90 |
89
|
expcom |
⊢ ( ( ( 𝜑 ∧ 𝑅 ∈ V ) ∧ ( ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ∧ ( 𝑅 ⊆ 𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) ) → ( 𝑛 ∈ ℕ0 → ( 𝑅 ↑𝑟 𝑛 ) ⊆ 𝑠 ) ) |
| 91 |
90
|
ralrimiv |
⊢ ( ( ( 𝜑 ∧ 𝑅 ∈ V ) ∧ ( ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ∧ ( 𝑅 ⊆ 𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) ) → ∀ 𝑛 ∈ ℕ0 ( 𝑅 ↑𝑟 𝑛 ) ⊆ 𝑠 ) |
| 92 |
|
iunss |
⊢ ( ∪ 𝑛 ∈ ℕ0 ( 𝑅 ↑𝑟 𝑛 ) ⊆ 𝑠 ↔ ∀ 𝑛 ∈ ℕ0 ( 𝑅 ↑𝑟 𝑛 ) ⊆ 𝑠 ) |
| 93 |
91 92
|
sylibr |
⊢ ( ( ( 𝜑 ∧ 𝑅 ∈ V ) ∧ ( ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ∧ ( 𝑅 ⊆ 𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) ) → ∪ 𝑛 ∈ ℕ0 ( 𝑅 ↑𝑟 𝑛 ) ⊆ 𝑠 ) |
| 94 |
93
|
expcom |
⊢ ( ( ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ∧ ( 𝑅 ⊆ 𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) → ( ( 𝜑 ∧ 𝑅 ∈ V ) → ∪ 𝑛 ∈ ℕ0 ( 𝑅 ↑𝑟 𝑛 ) ⊆ 𝑠 ) ) |
| 95 |
94
|
expcom |
⊢ ( ( 𝑅 ⊆ 𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) → ( ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 → ( ( 𝜑 ∧ 𝑅 ∈ V ) → ∪ 𝑛 ∈ ℕ0 ( 𝑅 ↑𝑟 𝑛 ) ⊆ 𝑠 ) ) ) |
| 96 |
95
|
expcom |
⊢ ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 → ( 𝑅 ⊆ 𝑠 → ( ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 → ( ( 𝜑 ∧ 𝑅 ∈ V ) → ∪ 𝑛 ∈ ℕ0 ( 𝑅 ↑𝑟 𝑛 ) ⊆ 𝑠 ) ) ) ) |
| 97 |
96
|
3imp1 |
⊢ ( ( ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ∧ 𝑅 ⊆ 𝑠 ∧ ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ) ∧ ( 𝜑 ∧ 𝑅 ∈ V ) ) → ∪ 𝑛 ∈ ℕ0 ( 𝑅 ↑𝑟 𝑛 ) ⊆ 𝑠 ) |
| 98 |
97
|
expcom |
⊢ ( ( 𝜑 ∧ 𝑅 ∈ V ) → ( ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ∧ 𝑅 ⊆ 𝑠 ∧ ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ) → ∪ 𝑛 ∈ ℕ0 ( 𝑅 ↑𝑟 𝑛 ) ⊆ 𝑠 ) ) |
| 99 |
|
sseq1 |
⊢ ( ( ( 𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 ( 𝑟 ↑𝑟 𝑛 ) ) ‘ 𝑅 ) = ∪ 𝑛 ∈ ℕ0 ( 𝑅 ↑𝑟 𝑛 ) → ( ( ( 𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 ( 𝑟 ↑𝑟 𝑛 ) ) ‘ 𝑅 ) ⊆ 𝑠 ↔ ∪ 𝑛 ∈ ℕ0 ( 𝑅 ↑𝑟 𝑛 ) ⊆ 𝑠 ) ) |
| 100 |
99
|
imbi2d |
⊢ ( ( ( 𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 ( 𝑟 ↑𝑟 𝑛 ) ) ‘ 𝑅 ) = ∪ 𝑛 ∈ ℕ0 ( 𝑅 ↑𝑟 𝑛 ) → ( ( ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ∧ 𝑅 ⊆ 𝑠 ∧ ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ) → ( ( 𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 ( 𝑟 ↑𝑟 𝑛 ) ) ‘ 𝑅 ) ⊆ 𝑠 ) ↔ ( ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ∧ 𝑅 ⊆ 𝑠 ∧ ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ) → ∪ 𝑛 ∈ ℕ0 ( 𝑅 ↑𝑟 𝑛 ) ⊆ 𝑠 ) ) ) |
| 101 |
98 100
|
imbitrrid |
⊢ ( ( ( 𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 ( 𝑟 ↑𝑟 𝑛 ) ) ‘ 𝑅 ) = ∪ 𝑛 ∈ ℕ0 ( 𝑅 ↑𝑟 𝑛 ) → ( ( 𝜑 ∧ 𝑅 ∈ V ) → ( ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ∧ 𝑅 ⊆ 𝑠 ∧ ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ) → ( ( 𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 ( 𝑟 ↑𝑟 𝑛 ) ) ‘ 𝑅 ) ⊆ 𝑠 ) ) ) |
| 102 |
11 101
|
mpcom |
⊢ ( ( 𝜑 ∧ 𝑅 ∈ V ) → ( ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ∧ 𝑅 ⊆ 𝑠 ∧ ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ) → ( ( 𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 ( 𝑟 ↑𝑟 𝑛 ) ) ‘ 𝑅 ) ⊆ 𝑠 ) ) |
| 103 |
|
df-rtrclrec |
⊢ t*rec = ( 𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 ( 𝑟 ↑𝑟 𝑛 ) ) |
| 104 |
|
fveq1 |
⊢ ( t*rec = ( 𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 ( 𝑟 ↑𝑟 𝑛 ) ) → ( t*rec ‘ 𝑅 ) = ( ( 𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 ( 𝑟 ↑𝑟 𝑛 ) ) ‘ 𝑅 ) ) |
| 105 |
104
|
sseq1d |
⊢ ( t*rec = ( 𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 ( 𝑟 ↑𝑟 𝑛 ) ) → ( ( t*rec ‘ 𝑅 ) ⊆ 𝑠 ↔ ( ( 𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 ( 𝑟 ↑𝑟 𝑛 ) ) ‘ 𝑅 ) ⊆ 𝑠 ) ) |
| 106 |
105
|
imbi2d |
⊢ ( t*rec = ( 𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 ( 𝑟 ↑𝑟 𝑛 ) ) → ( ( ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ∧ 𝑅 ⊆ 𝑠 ∧ ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ) → ( t*rec ‘ 𝑅 ) ⊆ 𝑠 ) ↔ ( ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ∧ 𝑅 ⊆ 𝑠 ∧ ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ) → ( ( 𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 ( 𝑟 ↑𝑟 𝑛 ) ) ‘ 𝑅 ) ⊆ 𝑠 ) ) ) |
| 107 |
106
|
imbi2d |
⊢ ( t*rec = ( 𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 ( 𝑟 ↑𝑟 𝑛 ) ) → ( ( ( 𝜑 ∧ 𝑅 ∈ V ) → ( ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ∧ 𝑅 ⊆ 𝑠 ∧ ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ) → ( t*rec ‘ 𝑅 ) ⊆ 𝑠 ) ) ↔ ( ( 𝜑 ∧ 𝑅 ∈ V ) → ( ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ∧ 𝑅 ⊆ 𝑠 ∧ ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ) → ( ( 𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 ( 𝑟 ↑𝑟 𝑛 ) ) ‘ 𝑅 ) ⊆ 𝑠 ) ) ) ) |
| 108 |
103 107
|
ax-mp |
⊢ ( ( ( 𝜑 ∧ 𝑅 ∈ V ) → ( ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ∧ 𝑅 ⊆ 𝑠 ∧ ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ) → ( t*rec ‘ 𝑅 ) ⊆ 𝑠 ) ) ↔ ( ( 𝜑 ∧ 𝑅 ∈ V ) → ( ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ∧ 𝑅 ⊆ 𝑠 ∧ ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ) → ( ( 𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 ( 𝑟 ↑𝑟 𝑛 ) ) ‘ 𝑅 ) ⊆ 𝑠 ) ) ) |
| 109 |
102 108
|
mpbir |
⊢ ( ( 𝜑 ∧ 𝑅 ∈ V ) → ( ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ∧ 𝑅 ⊆ 𝑠 ∧ ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ) → ( t*rec ‘ 𝑅 ) ⊆ 𝑠 ) ) |
| 110 |
109
|
ex |
⊢ ( 𝜑 → ( 𝑅 ∈ V → ( ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ∧ 𝑅 ⊆ 𝑠 ∧ ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ) → ( t*rec ‘ 𝑅 ) ⊆ 𝑠 ) ) ) |
| 111 |
|
fvprc |
⊢ ( ¬ 𝑅 ∈ V → ( t*rec ‘ 𝑅 ) = ∅ ) |
| 112 |
|
0ss |
⊢ ∅ ⊆ 𝑠 |
| 113 |
111 112
|
eqsstrdi |
⊢ ( ¬ 𝑅 ∈ V → ( t*rec ‘ 𝑅 ) ⊆ 𝑠 ) |
| 114 |
113
|
a1d |
⊢ ( ¬ 𝑅 ∈ V → ( ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ∧ 𝑅 ⊆ 𝑠 ∧ ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ) → ( t*rec ‘ 𝑅 ) ⊆ 𝑠 ) ) |
| 115 |
110 114
|
pm2.61d1 |
⊢ ( 𝜑 → ( ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ∧ 𝑅 ⊆ 𝑠 ∧ ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ) → ( t*rec ‘ 𝑅 ) ⊆ 𝑠 ) ) |
| 116 |
115
|
alrimiv |
⊢ ( 𝜑 → ∀ 𝑠 ( ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ∧ 𝑅 ⊆ 𝑠 ∧ ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ) → ( t*rec ‘ 𝑅 ) ⊆ 𝑠 ) ) |