Metamath Proof Explorer


Theorem rtrclreclem4

Description: The reflexive, transitive closure of R is the smallest reflexive, transitive relation which contains R and the identity. (Contributed by Drahflow, 12-Nov-2015) (Revised by RP, 30-May-2020) (Revised by AV, 13-Jul-2024)

Ref Expression
Hypothesis rtrclreclem.1 ( 𝜑 → Rel 𝑅 )
Assertion rtrclreclem4 ( 𝜑 → ∀ 𝑠 ( ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠𝑅𝑠 ∧ ( 𝑠𝑠 ) ⊆ 𝑠 ) → ( t*rec ‘ 𝑅 ) ⊆ 𝑠 ) )

Proof

Step Hyp Ref Expression
1 rtrclreclem.1 ( 𝜑 → Rel 𝑅 )
2 eqidd ( ( 𝜑𝑅 ∈ V ) → ( 𝑟 ∈ V ↦ 𝑛 ∈ ℕ0 ( 𝑟𝑟 𝑛 ) ) = ( 𝑟 ∈ V ↦ 𝑛 ∈ ℕ0 ( 𝑟𝑟 𝑛 ) ) )
3 oveq1 ( 𝑟 = 𝑅 → ( 𝑟𝑟 𝑛 ) = ( 𝑅𝑟 𝑛 ) )
4 3 iuneq2d ( 𝑟 = 𝑅 𝑛 ∈ ℕ0 ( 𝑟𝑟 𝑛 ) = 𝑛 ∈ ℕ0 ( 𝑅𝑟 𝑛 ) )
5 4 adantl ( ( ( 𝜑𝑅 ∈ V ) ∧ 𝑟 = 𝑅 ) → 𝑛 ∈ ℕ0 ( 𝑟𝑟 𝑛 ) = 𝑛 ∈ ℕ0 ( 𝑅𝑟 𝑛 ) )
6 simpr ( ( 𝜑𝑅 ∈ V ) → 𝑅 ∈ V )
7 nn0ex 0 ∈ V
8 ovex ( 𝑅𝑟 𝑛 ) ∈ V
9 7 8 iunex 𝑛 ∈ ℕ0 ( 𝑅𝑟 𝑛 ) ∈ V
10 9 a1i ( ( 𝜑𝑅 ∈ V ) → 𝑛 ∈ ℕ0 ( 𝑅𝑟 𝑛 ) ∈ V )
11 2 5 6 10 fvmptd ( ( 𝜑𝑅 ∈ V ) → ( ( 𝑟 ∈ V ↦ 𝑛 ∈ ℕ0 ( 𝑟𝑟 𝑛 ) ) ‘ 𝑅 ) = 𝑛 ∈ ℕ0 ( 𝑅𝑟 𝑛 ) )
12 eleq1 ( 𝑖 = 0 → ( 𝑖 ∈ ℕ0 ↔ 0 ∈ ℕ0 ) )
13 12 anbi1d ( 𝑖 = 0 → ( ( 𝑖 ∈ ℕ0 ∧ ( ( 𝜑𝑅 ∈ V ) ∧ ( ( 𝑠𝑠 ) ⊆ 𝑠 ∧ ( 𝑅𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) ) ) ↔ ( 0 ∈ ℕ0 ∧ ( ( 𝜑𝑅 ∈ V ) ∧ ( ( 𝑠𝑠 ) ⊆ 𝑠 ∧ ( 𝑅𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) ) ) ) )
14 oveq2 ( 𝑖 = 0 → ( 𝑅𝑟 𝑖 ) = ( 𝑅𝑟 0 ) )
15 14 sseq1d ( 𝑖 = 0 → ( ( 𝑅𝑟 𝑖 ) ⊆ 𝑠 ↔ ( 𝑅𝑟 0 ) ⊆ 𝑠 ) )
16 13 15 imbi12d ( 𝑖 = 0 → ( ( ( 𝑖 ∈ ℕ0 ∧ ( ( 𝜑𝑅 ∈ V ) ∧ ( ( 𝑠𝑠 ) ⊆ 𝑠 ∧ ( 𝑅𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) ) ) → ( 𝑅𝑟 𝑖 ) ⊆ 𝑠 ) ↔ ( ( 0 ∈ ℕ0 ∧ ( ( 𝜑𝑅 ∈ V ) ∧ ( ( 𝑠𝑠 ) ⊆ 𝑠 ∧ ( 𝑅𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) ) ) → ( 𝑅𝑟 0 ) ⊆ 𝑠 ) ) )
17 eleq1 ( 𝑖 = 𝑚 → ( 𝑖 ∈ ℕ0𝑚 ∈ ℕ0 ) )
18 17 anbi1d ( 𝑖 = 𝑚 → ( ( 𝑖 ∈ ℕ0 ∧ ( ( 𝜑𝑅 ∈ V ) ∧ ( ( 𝑠𝑠 ) ⊆ 𝑠 ∧ ( 𝑅𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) ) ) ↔ ( 𝑚 ∈ ℕ0 ∧ ( ( 𝜑𝑅 ∈ V ) ∧ ( ( 𝑠𝑠 ) ⊆ 𝑠 ∧ ( 𝑅𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) ) ) ) )
19 oveq2 ( 𝑖 = 𝑚 → ( 𝑅𝑟 𝑖 ) = ( 𝑅𝑟 𝑚 ) )
20 19 sseq1d ( 𝑖 = 𝑚 → ( ( 𝑅𝑟 𝑖 ) ⊆ 𝑠 ↔ ( 𝑅𝑟 𝑚 ) ⊆ 𝑠 ) )
21 18 20 imbi12d ( 𝑖 = 𝑚 → ( ( ( 𝑖 ∈ ℕ0 ∧ ( ( 𝜑𝑅 ∈ V ) ∧ ( ( 𝑠𝑠 ) ⊆ 𝑠 ∧ ( 𝑅𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) ) ) → ( 𝑅𝑟 𝑖 ) ⊆ 𝑠 ) ↔ ( ( 𝑚 ∈ ℕ0 ∧ ( ( 𝜑𝑅 ∈ V ) ∧ ( ( 𝑠𝑠 ) ⊆ 𝑠 ∧ ( 𝑅𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) ) ) → ( 𝑅𝑟 𝑚 ) ⊆ 𝑠 ) ) )
22 eleq1 ( 𝑖 = ( 𝑚 + 1 ) → ( 𝑖 ∈ ℕ0 ↔ ( 𝑚 + 1 ) ∈ ℕ0 ) )
23 22 anbi1d ( 𝑖 = ( 𝑚 + 1 ) → ( ( 𝑖 ∈ ℕ0 ∧ ( ( 𝜑𝑅 ∈ V ) ∧ ( ( 𝑠𝑠 ) ⊆ 𝑠 ∧ ( 𝑅𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) ) ) ↔ ( ( 𝑚 + 1 ) ∈ ℕ0 ∧ ( ( 𝜑𝑅 ∈ V ) ∧ ( ( 𝑠𝑠 ) ⊆ 𝑠 ∧ ( 𝑅𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) ) ) ) )
24 oveq2 ( 𝑖 = ( 𝑚 + 1 ) → ( 𝑅𝑟 𝑖 ) = ( 𝑅𝑟 ( 𝑚 + 1 ) ) )
25 24 sseq1d ( 𝑖 = ( 𝑚 + 1 ) → ( ( 𝑅𝑟 𝑖 ) ⊆ 𝑠 ↔ ( 𝑅𝑟 ( 𝑚 + 1 ) ) ⊆ 𝑠 ) )
26 23 25 imbi12d ( 𝑖 = ( 𝑚 + 1 ) → ( ( ( 𝑖 ∈ ℕ0 ∧ ( ( 𝜑𝑅 ∈ V ) ∧ ( ( 𝑠𝑠 ) ⊆ 𝑠 ∧ ( 𝑅𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) ) ) → ( 𝑅𝑟 𝑖 ) ⊆ 𝑠 ) ↔ ( ( ( 𝑚 + 1 ) ∈ ℕ0 ∧ ( ( 𝜑𝑅 ∈ V ) ∧ ( ( 𝑠𝑠 ) ⊆ 𝑠 ∧ ( 𝑅𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) ) ) → ( 𝑅𝑟 ( 𝑚 + 1 ) ) ⊆ 𝑠 ) ) )
27 eleq1 ( 𝑖 = 𝑛 → ( 𝑖 ∈ ℕ0𝑛 ∈ ℕ0 ) )
28 27 anbi1d ( 𝑖 = 𝑛 → ( ( 𝑖 ∈ ℕ0 ∧ ( ( 𝜑𝑅 ∈ V ) ∧ ( ( 𝑠𝑠 ) ⊆ 𝑠 ∧ ( 𝑅𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) ) ) ↔ ( 𝑛 ∈ ℕ0 ∧ ( ( 𝜑𝑅 ∈ V ) ∧ ( ( 𝑠𝑠 ) ⊆ 𝑠 ∧ ( 𝑅𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) ) ) ) )
29 oveq2 ( 𝑖 = 𝑛 → ( 𝑅𝑟 𝑖 ) = ( 𝑅𝑟 𝑛 ) )
30 29 sseq1d ( 𝑖 = 𝑛 → ( ( 𝑅𝑟 𝑖 ) ⊆ 𝑠 ↔ ( 𝑅𝑟 𝑛 ) ⊆ 𝑠 ) )
31 28 30 imbi12d ( 𝑖 = 𝑛 → ( ( ( 𝑖 ∈ ℕ0 ∧ ( ( 𝜑𝑅 ∈ V ) ∧ ( ( 𝑠𝑠 ) ⊆ 𝑠 ∧ ( 𝑅𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) ) ) → ( 𝑅𝑟 𝑖 ) ⊆ 𝑠 ) ↔ ( ( 𝑛 ∈ ℕ0 ∧ ( ( 𝜑𝑅 ∈ V ) ∧ ( ( 𝑠𝑠 ) ⊆ 𝑠 ∧ ( 𝑅𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) ) ) → ( 𝑅𝑟 𝑛 ) ⊆ 𝑠 ) ) )
32 simprll ( ( 0 ∈ ℕ0 ∧ ( ( 𝜑𝑅 ∈ V ) ∧ ( ( 𝑠𝑠 ) ⊆ 𝑠 ∧ ( 𝑅𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) ) ) → 𝜑 )
33 32 1 syl ( ( 0 ∈ ℕ0 ∧ ( ( 𝜑𝑅 ∈ V ) ∧ ( ( 𝑠𝑠 ) ⊆ 𝑠 ∧ ( 𝑅𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) ) ) → Rel 𝑅 )
34 simprlr ( ( 0 ∈ ℕ0 ∧ ( ( 𝜑𝑅 ∈ V ) ∧ ( ( 𝑠𝑠 ) ⊆ 𝑠 ∧ ( 𝑅𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) ) ) → 𝑅 ∈ V )
35 33 34 relexp0d ( ( 0 ∈ ℕ0 ∧ ( ( 𝜑𝑅 ∈ V ) ∧ ( ( 𝑠𝑠 ) ⊆ 𝑠 ∧ ( 𝑅𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) ) ) → ( 𝑅𝑟 0 ) = ( I ↾ 𝑅 ) )
36 relfld ( Rel 𝑅 𝑅 = ( dom 𝑅 ∪ ran 𝑅 ) )
37 33 36 syl ( ( 0 ∈ ℕ0 ∧ ( ( 𝜑𝑅 ∈ V ) ∧ ( ( 𝑠𝑠 ) ⊆ 𝑠 ∧ ( 𝑅𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) ) ) → 𝑅 = ( dom 𝑅 ∪ ran 𝑅 ) )
38 simprrr ( ( ( 𝜑𝑅 ∈ V ) ∧ ( ( 𝑠𝑠 ) ⊆ 𝑠 ∧ ( 𝑅𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) ) → ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 )
39 38 adantl ( ( 0 ∈ ℕ0 ∧ ( ( 𝜑𝑅 ∈ V ) ∧ ( ( 𝑠𝑠 ) ⊆ 𝑠 ∧ ( 𝑅𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) ) ) → ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 )
40 reseq2 ( 𝑅 = ( dom 𝑅 ∪ ran 𝑅 ) → ( I ↾ 𝑅 ) = ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) )
41 40 sseq1d ( 𝑅 = ( dom 𝑅 ∪ ran 𝑅 ) → ( ( I ↾ 𝑅 ) ⊆ 𝑠 ↔ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) )
42 39 41 syl5ibr ( 𝑅 = ( dom 𝑅 ∪ ran 𝑅 ) → ( ( 0 ∈ ℕ0 ∧ ( ( 𝜑𝑅 ∈ V ) ∧ ( ( 𝑠𝑠 ) ⊆ 𝑠 ∧ ( 𝑅𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) ) ) → ( I ↾ 𝑅 ) ⊆ 𝑠 ) )
43 37 42 mpcom ( ( 0 ∈ ℕ0 ∧ ( ( 𝜑𝑅 ∈ V ) ∧ ( ( 𝑠𝑠 ) ⊆ 𝑠 ∧ ( 𝑅𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) ) ) → ( I ↾ 𝑅 ) ⊆ 𝑠 )
44 35 43 eqsstrd ( ( 0 ∈ ℕ0 ∧ ( ( 𝜑𝑅 ∈ V ) ∧ ( ( 𝑠𝑠 ) ⊆ 𝑠 ∧ ( 𝑅𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) ) ) → ( 𝑅𝑟 0 ) ⊆ 𝑠 )
45 simprrr ( ( 𝑅𝑠 ∧ ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ∧ ( ( ( 𝑚 ∈ ℕ0 ∧ ( ( 𝜑𝑅 ∈ V ) ∧ ( ( 𝑠𝑠 ) ⊆ 𝑠 ∧ ( 𝑅𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) ) ) → ( 𝑅𝑟 𝑚 ) ⊆ 𝑠 ) ∧ 𝑚 ∈ ℕ0 ) ) ) → 𝑚 ∈ ℕ0 )
46 45 adantl ( ( ( 𝑠𝑠 ) ⊆ 𝑠 ∧ ( 𝑅𝑠 ∧ ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ∧ ( ( ( 𝑚 ∈ ℕ0 ∧ ( ( 𝜑𝑅 ∈ V ) ∧ ( ( 𝑠𝑠 ) ⊆ 𝑠 ∧ ( 𝑅𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) ) ) → ( 𝑅𝑟 𝑚 ) ⊆ 𝑠 ) ∧ 𝑚 ∈ ℕ0 ) ) ) ) → 𝑚 ∈ ℕ0 )
47 46 adantl ( ( ( 𝜑𝑅 ∈ V ) ∧ ( ( 𝑠𝑠 ) ⊆ 𝑠 ∧ ( 𝑅𝑠 ∧ ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ∧ ( ( ( 𝑚 ∈ ℕ0 ∧ ( ( 𝜑𝑅 ∈ V ) ∧ ( ( 𝑠𝑠 ) ⊆ 𝑠 ∧ ( 𝑅𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) ) ) → ( 𝑅𝑟 𝑚 ) ⊆ 𝑠 ) ∧ 𝑚 ∈ ℕ0 ) ) ) ) ) → 𝑚 ∈ ℕ0 )
48 47 adantl ( ( ( 𝑚 + 1 ) ∈ ℕ0 ∧ ( ( 𝜑𝑅 ∈ V ) ∧ ( ( 𝑠𝑠 ) ⊆ 𝑠 ∧ ( 𝑅𝑠 ∧ ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ∧ ( ( ( 𝑚 ∈ ℕ0 ∧ ( ( 𝜑𝑅 ∈ V ) ∧ ( ( 𝑠𝑠 ) ⊆ 𝑠 ∧ ( 𝑅𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) ) ) → ( 𝑅𝑟 𝑚 ) ⊆ 𝑠 ) ∧ 𝑚 ∈ ℕ0 ) ) ) ) ) ) → 𝑚 ∈ ℕ0 )
49 simprl ( ( ( 𝑚 + 1 ) ∈ ℕ0 ∧ ( ( 𝜑𝑅 ∈ V ) ∧ ( ( 𝑠𝑠 ) ⊆ 𝑠 ∧ ( 𝑅𝑠 ∧ ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ∧ ( ( ( 𝑚 ∈ ℕ0 ∧ ( ( 𝜑𝑅 ∈ V ) ∧ ( ( 𝑠𝑠 ) ⊆ 𝑠 ∧ ( 𝑅𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) ) ) → ( 𝑅𝑟 𝑚 ) ⊆ 𝑠 ) ∧ 𝑚 ∈ ℕ0 ) ) ) ) ) ) → ( 𝜑𝑅 ∈ V ) )
50 simprrl ( ( ( 𝑚 + 1 ) ∈ ℕ0 ∧ ( ( 𝜑𝑅 ∈ V ) ∧ ( ( 𝑠𝑠 ) ⊆ 𝑠 ∧ ( 𝑅𝑠 ∧ ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ∧ ( ( ( 𝑚 ∈ ℕ0 ∧ ( ( 𝜑𝑅 ∈ V ) ∧ ( ( 𝑠𝑠 ) ⊆ 𝑠 ∧ ( 𝑅𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) ) ) → ( 𝑅𝑟 𝑚 ) ⊆ 𝑠 ) ∧ 𝑚 ∈ ℕ0 ) ) ) ) ) ) → ( 𝑠𝑠 ) ⊆ 𝑠 )
51 simprrl ( ( ( 𝜑𝑅 ∈ V ) ∧ ( ( 𝑠𝑠 ) ⊆ 𝑠 ∧ ( 𝑅𝑠 ∧ ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ∧ ( ( ( 𝑚 ∈ ℕ0 ∧ ( ( 𝜑𝑅 ∈ V ) ∧ ( ( 𝑠𝑠 ) ⊆ 𝑠 ∧ ( 𝑅𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) ) ) → ( 𝑅𝑟 𝑚 ) ⊆ 𝑠 ) ∧ 𝑚 ∈ ℕ0 ) ) ) ) ) → 𝑅𝑠 )
52 51 adantl ( ( ( 𝑚 + 1 ) ∈ ℕ0 ∧ ( ( 𝜑𝑅 ∈ V ) ∧ ( ( 𝑠𝑠 ) ⊆ 𝑠 ∧ ( 𝑅𝑠 ∧ ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ∧ ( ( ( 𝑚 ∈ ℕ0 ∧ ( ( 𝜑𝑅 ∈ V ) ∧ ( ( 𝑠𝑠 ) ⊆ 𝑠 ∧ ( 𝑅𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) ) ) → ( 𝑅𝑟 𝑚 ) ⊆ 𝑠 ) ∧ 𝑚 ∈ ℕ0 ) ) ) ) ) ) → 𝑅𝑠 )
53 simprrl ( ( ( 𝑠𝑠 ) ⊆ 𝑠 ∧ ( 𝑅𝑠 ∧ ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ∧ ( ( ( 𝑚 ∈ ℕ0 ∧ ( ( 𝜑𝑅 ∈ V ) ∧ ( ( 𝑠𝑠 ) ⊆ 𝑠 ∧ ( 𝑅𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) ) ) → ( 𝑅𝑟 𝑚 ) ⊆ 𝑠 ) ∧ 𝑚 ∈ ℕ0 ) ) ) ) → ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 )
54 53 adantl ( ( ( 𝜑𝑅 ∈ V ) ∧ ( ( 𝑠𝑠 ) ⊆ 𝑠 ∧ ( 𝑅𝑠 ∧ ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ∧ ( ( ( 𝑚 ∈ ℕ0 ∧ ( ( 𝜑𝑅 ∈ V ) ∧ ( ( 𝑠𝑠 ) ⊆ 𝑠 ∧ ( 𝑅𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) ) ) → ( 𝑅𝑟 𝑚 ) ⊆ 𝑠 ) ∧ 𝑚 ∈ ℕ0 ) ) ) ) ) → ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 )
55 54 adantl ( ( ( 𝑚 + 1 ) ∈ ℕ0 ∧ ( ( 𝜑𝑅 ∈ V ) ∧ ( ( 𝑠𝑠 ) ⊆ 𝑠 ∧ ( 𝑅𝑠 ∧ ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ∧ ( ( ( 𝑚 ∈ ℕ0 ∧ ( ( 𝜑𝑅 ∈ V ) ∧ ( ( 𝑠𝑠 ) ⊆ 𝑠 ∧ ( 𝑅𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) ) ) → ( 𝑅𝑟 𝑚 ) ⊆ 𝑠 ) ∧ 𝑚 ∈ ℕ0 ) ) ) ) ) ) → ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 )
56 50 52 55 jca32 ( ( ( 𝑚 + 1 ) ∈ ℕ0 ∧ ( ( 𝜑𝑅 ∈ V ) ∧ ( ( 𝑠𝑠 ) ⊆ 𝑠 ∧ ( 𝑅𝑠 ∧ ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ∧ ( ( ( 𝑚 ∈ ℕ0 ∧ ( ( 𝜑𝑅 ∈ V ) ∧ ( ( 𝑠𝑠 ) ⊆ 𝑠 ∧ ( 𝑅𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) ) ) → ( 𝑅𝑟 𝑚 ) ⊆ 𝑠 ) ∧ 𝑚 ∈ ℕ0 ) ) ) ) ) ) → ( ( 𝑠𝑠 ) ⊆ 𝑠 ∧ ( 𝑅𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) )
57 48 49 56 jca32 ( ( ( 𝑚 + 1 ) ∈ ℕ0 ∧ ( ( 𝜑𝑅 ∈ V ) ∧ ( ( 𝑠𝑠 ) ⊆ 𝑠 ∧ ( 𝑅𝑠 ∧ ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ∧ ( ( ( 𝑚 ∈ ℕ0 ∧ ( ( 𝜑𝑅 ∈ V ) ∧ ( ( 𝑠𝑠 ) ⊆ 𝑠 ∧ ( 𝑅𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) ) ) → ( 𝑅𝑟 𝑚 ) ⊆ 𝑠 ) ∧ 𝑚 ∈ ℕ0 ) ) ) ) ) ) → ( 𝑚 ∈ ℕ0 ∧ ( ( 𝜑𝑅 ∈ V ) ∧ ( ( 𝑠𝑠 ) ⊆ 𝑠 ∧ ( 𝑅𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) ) ) )
58 simprrl ( ( 𝑅𝑠 ∧ ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ∧ ( ( ( 𝑚 ∈ ℕ0 ∧ ( ( 𝜑𝑅 ∈ V ) ∧ ( ( 𝑠𝑠 ) ⊆ 𝑠 ∧ ( 𝑅𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) ) ) → ( 𝑅𝑟 𝑚 ) ⊆ 𝑠 ) ∧ 𝑚 ∈ ℕ0 ) ) ) → ( ( 𝑚 ∈ ℕ0 ∧ ( ( 𝜑𝑅 ∈ V ) ∧ ( ( 𝑠𝑠 ) ⊆ 𝑠 ∧ ( 𝑅𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) ) ) → ( 𝑅𝑟 𝑚 ) ⊆ 𝑠 ) )
59 58 adantl ( ( ( 𝑠𝑠 ) ⊆ 𝑠 ∧ ( 𝑅𝑠 ∧ ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ∧ ( ( ( 𝑚 ∈ ℕ0 ∧ ( ( 𝜑𝑅 ∈ V ) ∧ ( ( 𝑠𝑠 ) ⊆ 𝑠 ∧ ( 𝑅𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) ) ) → ( 𝑅𝑟 𝑚 ) ⊆ 𝑠 ) ∧ 𝑚 ∈ ℕ0 ) ) ) ) → ( ( 𝑚 ∈ ℕ0 ∧ ( ( 𝜑𝑅 ∈ V ) ∧ ( ( 𝑠𝑠 ) ⊆ 𝑠 ∧ ( 𝑅𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) ) ) → ( 𝑅𝑟 𝑚 ) ⊆ 𝑠 ) )
60 59 adantl ( ( ( 𝜑𝑅 ∈ V ) ∧ ( ( 𝑠𝑠 ) ⊆ 𝑠 ∧ ( 𝑅𝑠 ∧ ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ∧ ( ( ( 𝑚 ∈ ℕ0 ∧ ( ( 𝜑𝑅 ∈ V ) ∧ ( ( 𝑠𝑠 ) ⊆ 𝑠 ∧ ( 𝑅𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) ) ) → ( 𝑅𝑟 𝑚 ) ⊆ 𝑠 ) ∧ 𝑚 ∈ ℕ0 ) ) ) ) ) → ( ( 𝑚 ∈ ℕ0 ∧ ( ( 𝜑𝑅 ∈ V ) ∧ ( ( 𝑠𝑠 ) ⊆ 𝑠 ∧ ( 𝑅𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) ) ) → ( 𝑅𝑟 𝑚 ) ⊆ 𝑠 ) )
61 60 adantl ( ( ( 𝑚 + 1 ) ∈ ℕ0 ∧ ( ( 𝜑𝑅 ∈ V ) ∧ ( ( 𝑠𝑠 ) ⊆ 𝑠 ∧ ( 𝑅𝑠 ∧ ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ∧ ( ( ( 𝑚 ∈ ℕ0 ∧ ( ( 𝜑𝑅 ∈ V ) ∧ ( ( 𝑠𝑠 ) ⊆ 𝑠 ∧ ( 𝑅𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) ) ) → ( 𝑅𝑟 𝑚 ) ⊆ 𝑠 ) ∧ 𝑚 ∈ ℕ0 ) ) ) ) ) ) → ( ( 𝑚 ∈ ℕ0 ∧ ( ( 𝜑𝑅 ∈ V ) ∧ ( ( 𝑠𝑠 ) ⊆ 𝑠 ∧ ( 𝑅𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) ) ) → ( 𝑅𝑟 𝑚 ) ⊆ 𝑠 ) )
62 57 61 mpd ( ( ( 𝑚 + 1 ) ∈ ℕ0 ∧ ( ( 𝜑𝑅 ∈ V ) ∧ ( ( 𝑠𝑠 ) ⊆ 𝑠 ∧ ( 𝑅𝑠 ∧ ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ∧ ( ( ( 𝑚 ∈ ℕ0 ∧ ( ( 𝜑𝑅 ∈ V ) ∧ ( ( 𝑠𝑠 ) ⊆ 𝑠 ∧ ( 𝑅𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) ) ) → ( 𝑅𝑟 𝑚 ) ⊆ 𝑠 ) ∧ 𝑚 ∈ ℕ0 ) ) ) ) ) ) → ( 𝑅𝑟 𝑚 ) ⊆ 𝑠 )
63 simprll ( ( ( 𝑚 + 1 ) ∈ ℕ0 ∧ ( ( 𝜑𝑅 ∈ V ) ∧ ( ( 𝑠𝑠 ) ⊆ 𝑠 ∧ ( 𝑅𝑠 ∧ ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ∧ ( ( ( 𝑚 ∈ ℕ0 ∧ ( ( 𝜑𝑅 ∈ V ) ∧ ( ( 𝑠𝑠 ) ⊆ 𝑠 ∧ ( 𝑅𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) ) ) → ( 𝑅𝑟 𝑚 ) ⊆ 𝑠 ) ∧ 𝑚 ∈ ℕ0 ) ) ) ) ) ) → 𝜑 )
64 63 adantl ( ( ( 𝑅𝑟 𝑚 ) ⊆ 𝑠 ∧ ( ( 𝑚 + 1 ) ∈ ℕ0 ∧ ( ( 𝜑𝑅 ∈ V ) ∧ ( ( 𝑠𝑠 ) ⊆ 𝑠 ∧ ( 𝑅𝑠 ∧ ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ∧ ( ( ( 𝑚 ∈ ℕ0 ∧ ( ( 𝜑𝑅 ∈ V ) ∧ ( ( 𝑠𝑠 ) ⊆ 𝑠 ∧ ( 𝑅𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) ) ) → ( 𝑅𝑟 𝑚 ) ⊆ 𝑠 ) ∧ 𝑚 ∈ ℕ0 ) ) ) ) ) ) ) → 𝜑 )
65 64 1 syl ( ( ( 𝑅𝑟 𝑚 ) ⊆ 𝑠 ∧ ( ( 𝑚 + 1 ) ∈ ℕ0 ∧ ( ( 𝜑𝑅 ∈ V ) ∧ ( ( 𝑠𝑠 ) ⊆ 𝑠 ∧ ( 𝑅𝑠 ∧ ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ∧ ( ( ( 𝑚 ∈ ℕ0 ∧ ( ( 𝜑𝑅 ∈ V ) ∧ ( ( 𝑠𝑠 ) ⊆ 𝑠 ∧ ( 𝑅𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) ) ) → ( 𝑅𝑟 𝑚 ) ⊆ 𝑠 ) ∧ 𝑚 ∈ ℕ0 ) ) ) ) ) ) ) → Rel 𝑅 )
66 48 adantl ( ( ( 𝑅𝑟 𝑚 ) ⊆ 𝑠 ∧ ( ( 𝑚 + 1 ) ∈ ℕ0 ∧ ( ( 𝜑𝑅 ∈ V ) ∧ ( ( 𝑠𝑠 ) ⊆ 𝑠 ∧ ( 𝑅𝑠 ∧ ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ∧ ( ( ( 𝑚 ∈ ℕ0 ∧ ( ( 𝜑𝑅 ∈ V ) ∧ ( ( 𝑠𝑠 ) ⊆ 𝑠 ∧ ( 𝑅𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) ) ) → ( 𝑅𝑟 𝑚 ) ⊆ 𝑠 ) ∧ 𝑚 ∈ ℕ0 ) ) ) ) ) ) ) → 𝑚 ∈ ℕ0 )
67 65 66 relexpsucrd ( ( ( 𝑅𝑟 𝑚 ) ⊆ 𝑠 ∧ ( ( 𝑚 + 1 ) ∈ ℕ0 ∧ ( ( 𝜑𝑅 ∈ V ) ∧ ( ( 𝑠𝑠 ) ⊆ 𝑠 ∧ ( 𝑅𝑠 ∧ ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ∧ ( ( ( 𝑚 ∈ ℕ0 ∧ ( ( 𝜑𝑅 ∈ V ) ∧ ( ( 𝑠𝑠 ) ⊆ 𝑠 ∧ ( 𝑅𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) ) ) → ( 𝑅𝑟 𝑚 ) ⊆ 𝑠 ) ∧ 𝑚 ∈ ℕ0 ) ) ) ) ) ) ) → ( 𝑅𝑟 ( 𝑚 + 1 ) ) = ( ( 𝑅𝑟 𝑚 ) ∘ 𝑅 ) )
68 52 adantl ( ( ( 𝑅𝑟 𝑚 ) ⊆ 𝑠 ∧ ( ( 𝑚 + 1 ) ∈ ℕ0 ∧ ( ( 𝜑𝑅 ∈ V ) ∧ ( ( 𝑠𝑠 ) ⊆ 𝑠 ∧ ( 𝑅𝑠 ∧ ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ∧ ( ( ( 𝑚 ∈ ℕ0 ∧ ( ( 𝜑𝑅 ∈ V ) ∧ ( ( 𝑠𝑠 ) ⊆ 𝑠 ∧ ( 𝑅𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) ) ) → ( 𝑅𝑟 𝑚 ) ⊆ 𝑠 ) ∧ 𝑚 ∈ ℕ0 ) ) ) ) ) ) ) → 𝑅𝑠 )
69 coss2 ( 𝑅𝑠 → ( ( 𝑅𝑟 𝑚 ) ∘ 𝑅 ) ⊆ ( ( 𝑅𝑟 𝑚 ) ∘ 𝑠 ) )
70 68 69 syl ( ( ( 𝑅𝑟 𝑚 ) ⊆ 𝑠 ∧ ( ( 𝑚 + 1 ) ∈ ℕ0 ∧ ( ( 𝜑𝑅 ∈ V ) ∧ ( ( 𝑠𝑠 ) ⊆ 𝑠 ∧ ( 𝑅𝑠 ∧ ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ∧ ( ( ( 𝑚 ∈ ℕ0 ∧ ( ( 𝜑𝑅 ∈ V ) ∧ ( ( 𝑠𝑠 ) ⊆ 𝑠 ∧ ( 𝑅𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) ) ) → ( 𝑅𝑟 𝑚 ) ⊆ 𝑠 ) ∧ 𝑚 ∈ ℕ0 ) ) ) ) ) ) ) → ( ( 𝑅𝑟 𝑚 ) ∘ 𝑅 ) ⊆ ( ( 𝑅𝑟 𝑚 ) ∘ 𝑠 ) )
71 coss1 ( ( 𝑅𝑟 𝑚 ) ⊆ 𝑠 → ( ( 𝑅𝑟 𝑚 ) ∘ 𝑠 ) ⊆ ( 𝑠𝑠 ) )
72 71 50 sylan9ss ( ( ( 𝑅𝑟 𝑚 ) ⊆ 𝑠 ∧ ( ( 𝑚 + 1 ) ∈ ℕ0 ∧ ( ( 𝜑𝑅 ∈ V ) ∧ ( ( 𝑠𝑠 ) ⊆ 𝑠 ∧ ( 𝑅𝑠 ∧ ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ∧ ( ( ( 𝑚 ∈ ℕ0 ∧ ( ( 𝜑𝑅 ∈ V ) ∧ ( ( 𝑠𝑠 ) ⊆ 𝑠 ∧ ( 𝑅𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) ) ) → ( 𝑅𝑟 𝑚 ) ⊆ 𝑠 ) ∧ 𝑚 ∈ ℕ0 ) ) ) ) ) ) ) → ( ( 𝑅𝑟 𝑚 ) ∘ 𝑠 ) ⊆ 𝑠 )
73 70 72 sstrd ( ( ( 𝑅𝑟 𝑚 ) ⊆ 𝑠 ∧ ( ( 𝑚 + 1 ) ∈ ℕ0 ∧ ( ( 𝜑𝑅 ∈ V ) ∧ ( ( 𝑠𝑠 ) ⊆ 𝑠 ∧ ( 𝑅𝑠 ∧ ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ∧ ( ( ( 𝑚 ∈ ℕ0 ∧ ( ( 𝜑𝑅 ∈ V ) ∧ ( ( 𝑠𝑠 ) ⊆ 𝑠 ∧ ( 𝑅𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) ) ) → ( 𝑅𝑟 𝑚 ) ⊆ 𝑠 ) ∧ 𝑚 ∈ ℕ0 ) ) ) ) ) ) ) → ( ( 𝑅𝑟 𝑚 ) ∘ 𝑅 ) ⊆ 𝑠 )
74 67 73 eqsstrd ( ( ( 𝑅𝑟 𝑚 ) ⊆ 𝑠 ∧ ( ( 𝑚 + 1 ) ∈ ℕ0 ∧ ( ( 𝜑𝑅 ∈ V ) ∧ ( ( 𝑠𝑠 ) ⊆ 𝑠 ∧ ( 𝑅𝑠 ∧ ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ∧ ( ( ( 𝑚 ∈ ℕ0 ∧ ( ( 𝜑𝑅 ∈ V ) ∧ ( ( 𝑠𝑠 ) ⊆ 𝑠 ∧ ( 𝑅𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) ) ) → ( 𝑅𝑟 𝑚 ) ⊆ 𝑠 ) ∧ 𝑚 ∈ ℕ0 ) ) ) ) ) ) ) → ( 𝑅𝑟 ( 𝑚 + 1 ) ) ⊆ 𝑠 )
75 62 74 mpancom ( ( ( 𝑚 + 1 ) ∈ ℕ0 ∧ ( ( 𝜑𝑅 ∈ V ) ∧ ( ( 𝑠𝑠 ) ⊆ 𝑠 ∧ ( 𝑅𝑠 ∧ ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ∧ ( ( ( 𝑚 ∈ ℕ0 ∧ ( ( 𝜑𝑅 ∈ V ) ∧ ( ( 𝑠𝑠 ) ⊆ 𝑠 ∧ ( 𝑅𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) ) ) → ( 𝑅𝑟 𝑚 ) ⊆ 𝑠 ) ∧ 𝑚 ∈ ℕ0 ) ) ) ) ) ) → ( 𝑅𝑟 ( 𝑚 + 1 ) ) ⊆ 𝑠 )
76 75 expcom ( ( ( 𝜑𝑅 ∈ V ) ∧ ( ( 𝑠𝑠 ) ⊆ 𝑠 ∧ ( 𝑅𝑠 ∧ ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ∧ ( ( ( 𝑚 ∈ ℕ0 ∧ ( ( 𝜑𝑅 ∈ V ) ∧ ( ( 𝑠𝑠 ) ⊆ 𝑠 ∧ ( 𝑅𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) ) ) → ( 𝑅𝑟 𝑚 ) ⊆ 𝑠 ) ∧ 𝑚 ∈ ℕ0 ) ) ) ) ) → ( ( 𝑚 + 1 ) ∈ ℕ0 → ( 𝑅𝑟 ( 𝑚 + 1 ) ) ⊆ 𝑠 ) )
77 76 expcom ( ( ( 𝑠𝑠 ) ⊆ 𝑠 ∧ ( 𝑅𝑠 ∧ ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ∧ ( ( ( 𝑚 ∈ ℕ0 ∧ ( ( 𝜑𝑅 ∈ V ) ∧ ( ( 𝑠𝑠 ) ⊆ 𝑠 ∧ ( 𝑅𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) ) ) → ( 𝑅𝑟 𝑚 ) ⊆ 𝑠 ) ∧ 𝑚 ∈ ℕ0 ) ) ) ) → ( ( 𝜑𝑅 ∈ V ) → ( ( 𝑚 + 1 ) ∈ ℕ0 → ( 𝑅𝑟 ( 𝑚 + 1 ) ) ⊆ 𝑠 ) ) )
78 77 expcom ( ( 𝑅𝑠 ∧ ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ∧ ( ( ( 𝑚 ∈ ℕ0 ∧ ( ( 𝜑𝑅 ∈ V ) ∧ ( ( 𝑠𝑠 ) ⊆ 𝑠 ∧ ( 𝑅𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) ) ) → ( 𝑅𝑟 𝑚 ) ⊆ 𝑠 ) ∧ 𝑚 ∈ ℕ0 ) ) ) → ( ( 𝑠𝑠 ) ⊆ 𝑠 → ( ( 𝜑𝑅 ∈ V ) → ( ( 𝑚 + 1 ) ∈ ℕ0 → ( 𝑅𝑟 ( 𝑚 + 1 ) ) ⊆ 𝑠 ) ) ) )
79 78 anassrs ( ( ( 𝑅𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ∧ ( ( ( 𝑚 ∈ ℕ0 ∧ ( ( 𝜑𝑅 ∈ V ) ∧ ( ( 𝑠𝑠 ) ⊆ 𝑠 ∧ ( 𝑅𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) ) ) → ( 𝑅𝑟 𝑚 ) ⊆ 𝑠 ) ∧ 𝑚 ∈ ℕ0 ) ) → ( ( 𝑠𝑠 ) ⊆ 𝑠 → ( ( 𝜑𝑅 ∈ V ) → ( ( 𝑚 + 1 ) ∈ ℕ0 → ( 𝑅𝑟 ( 𝑚 + 1 ) ) ⊆ 𝑠 ) ) ) )
80 79 impcom ( ( ( 𝑠𝑠 ) ⊆ 𝑠 ∧ ( ( 𝑅𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ∧ ( ( ( 𝑚 ∈ ℕ0 ∧ ( ( 𝜑𝑅 ∈ V ) ∧ ( ( 𝑠𝑠 ) ⊆ 𝑠 ∧ ( 𝑅𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) ) ) → ( 𝑅𝑟 𝑚 ) ⊆ 𝑠 ) ∧ 𝑚 ∈ ℕ0 ) ) ) → ( ( 𝜑𝑅 ∈ V ) → ( ( 𝑚 + 1 ) ∈ ℕ0 → ( 𝑅𝑟 ( 𝑚 + 1 ) ) ⊆ 𝑠 ) ) )
81 80 anassrs ( ( ( ( 𝑠𝑠 ) ⊆ 𝑠 ∧ ( 𝑅𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) ∧ ( ( ( 𝑚 ∈ ℕ0 ∧ ( ( 𝜑𝑅 ∈ V ) ∧ ( ( 𝑠𝑠 ) ⊆ 𝑠 ∧ ( 𝑅𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) ) ) → ( 𝑅𝑟 𝑚 ) ⊆ 𝑠 ) ∧ 𝑚 ∈ ℕ0 ) ) → ( ( 𝜑𝑅 ∈ V ) → ( ( 𝑚 + 1 ) ∈ ℕ0 → ( 𝑅𝑟 ( 𝑚 + 1 ) ) ⊆ 𝑠 ) ) )
82 81 impcom ( ( ( 𝜑𝑅 ∈ V ) ∧ ( ( ( 𝑠𝑠 ) ⊆ 𝑠 ∧ ( 𝑅𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) ∧ ( ( ( 𝑚 ∈ ℕ0 ∧ ( ( 𝜑𝑅 ∈ V ) ∧ ( ( 𝑠𝑠 ) ⊆ 𝑠 ∧ ( 𝑅𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) ) ) → ( 𝑅𝑟 𝑚 ) ⊆ 𝑠 ) ∧ 𝑚 ∈ ℕ0 ) ) ) → ( ( 𝑚 + 1 ) ∈ ℕ0 → ( 𝑅𝑟 ( 𝑚 + 1 ) ) ⊆ 𝑠 ) )
83 82 anassrs ( ( ( ( 𝜑𝑅 ∈ V ) ∧ ( ( 𝑠𝑠 ) ⊆ 𝑠 ∧ ( 𝑅𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) ) ∧ ( ( ( 𝑚 ∈ ℕ0 ∧ ( ( 𝜑𝑅 ∈ V ) ∧ ( ( 𝑠𝑠 ) ⊆ 𝑠 ∧ ( 𝑅𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) ) ) → ( 𝑅𝑟 𝑚 ) ⊆ 𝑠 ) ∧ 𝑚 ∈ ℕ0 ) ) → ( ( 𝑚 + 1 ) ∈ ℕ0 → ( 𝑅𝑟 ( 𝑚 + 1 ) ) ⊆ 𝑠 ) )
84 83 impcom ( ( ( 𝑚 + 1 ) ∈ ℕ0 ∧ ( ( ( 𝜑𝑅 ∈ V ) ∧ ( ( 𝑠𝑠 ) ⊆ 𝑠 ∧ ( 𝑅𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) ) ∧ ( ( ( 𝑚 ∈ ℕ0 ∧ ( ( 𝜑𝑅 ∈ V ) ∧ ( ( 𝑠𝑠 ) ⊆ 𝑠 ∧ ( 𝑅𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) ) ) → ( 𝑅𝑟 𝑚 ) ⊆ 𝑠 ) ∧ 𝑚 ∈ ℕ0 ) ) ) → ( 𝑅𝑟 ( 𝑚 + 1 ) ) ⊆ 𝑠 )
85 84 anassrs ( ( ( ( 𝑚 + 1 ) ∈ ℕ0 ∧ ( ( 𝜑𝑅 ∈ V ) ∧ ( ( 𝑠𝑠 ) ⊆ 𝑠 ∧ ( 𝑅𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) ) ) ∧ ( ( ( 𝑚 ∈ ℕ0 ∧ ( ( 𝜑𝑅 ∈ V ) ∧ ( ( 𝑠𝑠 ) ⊆ 𝑠 ∧ ( 𝑅𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) ) ) → ( 𝑅𝑟 𝑚 ) ⊆ 𝑠 ) ∧ 𝑚 ∈ ℕ0 ) ) → ( 𝑅𝑟 ( 𝑚 + 1 ) ) ⊆ 𝑠 )
86 85 expcom ( ( ( ( 𝑚 ∈ ℕ0 ∧ ( ( 𝜑𝑅 ∈ V ) ∧ ( ( 𝑠𝑠 ) ⊆ 𝑠 ∧ ( 𝑅𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) ) ) → ( 𝑅𝑟 𝑚 ) ⊆ 𝑠 ) ∧ 𝑚 ∈ ℕ0 ) → ( ( ( 𝑚 + 1 ) ∈ ℕ0 ∧ ( ( 𝜑𝑅 ∈ V ) ∧ ( ( 𝑠𝑠 ) ⊆ 𝑠 ∧ ( 𝑅𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) ) ) → ( 𝑅𝑟 ( 𝑚 + 1 ) ) ⊆ 𝑠 ) )
87 86 expcom ( 𝑚 ∈ ℕ0 → ( ( ( 𝑚 ∈ ℕ0 ∧ ( ( 𝜑𝑅 ∈ V ) ∧ ( ( 𝑠𝑠 ) ⊆ 𝑠 ∧ ( 𝑅𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) ) ) → ( 𝑅𝑟 𝑚 ) ⊆ 𝑠 ) → ( ( ( 𝑚 + 1 ) ∈ ℕ0 ∧ ( ( 𝜑𝑅 ∈ V ) ∧ ( ( 𝑠𝑠 ) ⊆ 𝑠 ∧ ( 𝑅𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) ) ) → ( 𝑅𝑟 ( 𝑚 + 1 ) ) ⊆ 𝑠 ) ) )
88 16 21 26 31 44 87 nn0ind ( 𝑛 ∈ ℕ0 → ( ( 𝑛 ∈ ℕ0 ∧ ( ( 𝜑𝑅 ∈ V ) ∧ ( ( 𝑠𝑠 ) ⊆ 𝑠 ∧ ( 𝑅𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) ) ) → ( 𝑅𝑟 𝑛 ) ⊆ 𝑠 ) )
89 88 anabsi5 ( ( 𝑛 ∈ ℕ0 ∧ ( ( 𝜑𝑅 ∈ V ) ∧ ( ( 𝑠𝑠 ) ⊆ 𝑠 ∧ ( 𝑅𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) ) ) → ( 𝑅𝑟 𝑛 ) ⊆ 𝑠 )
90 89 expcom ( ( ( 𝜑𝑅 ∈ V ) ∧ ( ( 𝑠𝑠 ) ⊆ 𝑠 ∧ ( 𝑅𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) ) → ( 𝑛 ∈ ℕ0 → ( 𝑅𝑟 𝑛 ) ⊆ 𝑠 ) )
91 90 ralrimiv ( ( ( 𝜑𝑅 ∈ V ) ∧ ( ( 𝑠𝑠 ) ⊆ 𝑠 ∧ ( 𝑅𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) ) → ∀ 𝑛 ∈ ℕ0 ( 𝑅𝑟 𝑛 ) ⊆ 𝑠 )
92 iunss ( 𝑛 ∈ ℕ0 ( 𝑅𝑟 𝑛 ) ⊆ 𝑠 ↔ ∀ 𝑛 ∈ ℕ0 ( 𝑅𝑟 𝑛 ) ⊆ 𝑠 )
93 91 92 sylibr ( ( ( 𝜑𝑅 ∈ V ) ∧ ( ( 𝑠𝑠 ) ⊆ 𝑠 ∧ ( 𝑅𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) ) → 𝑛 ∈ ℕ0 ( 𝑅𝑟 𝑛 ) ⊆ 𝑠 )
94 93 expcom ( ( ( 𝑠𝑠 ) ⊆ 𝑠 ∧ ( 𝑅𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) → ( ( 𝜑𝑅 ∈ V ) → 𝑛 ∈ ℕ0 ( 𝑅𝑟 𝑛 ) ⊆ 𝑠 ) )
95 94 expcom ( ( 𝑅𝑠 ∧ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) → ( ( 𝑠𝑠 ) ⊆ 𝑠 → ( ( 𝜑𝑅 ∈ V ) → 𝑛 ∈ ℕ0 ( 𝑅𝑟 𝑛 ) ⊆ 𝑠 ) ) )
96 95 expcom ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 → ( 𝑅𝑠 → ( ( 𝑠𝑠 ) ⊆ 𝑠 → ( ( 𝜑𝑅 ∈ V ) → 𝑛 ∈ ℕ0 ( 𝑅𝑟 𝑛 ) ⊆ 𝑠 ) ) ) )
97 96 3imp1 ( ( ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠𝑅𝑠 ∧ ( 𝑠𝑠 ) ⊆ 𝑠 ) ∧ ( 𝜑𝑅 ∈ V ) ) → 𝑛 ∈ ℕ0 ( 𝑅𝑟 𝑛 ) ⊆ 𝑠 )
98 97 expcom ( ( 𝜑𝑅 ∈ V ) → ( ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠𝑅𝑠 ∧ ( 𝑠𝑠 ) ⊆ 𝑠 ) → 𝑛 ∈ ℕ0 ( 𝑅𝑟 𝑛 ) ⊆ 𝑠 ) )
99 sseq1 ( ( ( 𝑟 ∈ V ↦ 𝑛 ∈ ℕ0 ( 𝑟𝑟 𝑛 ) ) ‘ 𝑅 ) = 𝑛 ∈ ℕ0 ( 𝑅𝑟 𝑛 ) → ( ( ( 𝑟 ∈ V ↦ 𝑛 ∈ ℕ0 ( 𝑟𝑟 𝑛 ) ) ‘ 𝑅 ) ⊆ 𝑠 𝑛 ∈ ℕ0 ( 𝑅𝑟 𝑛 ) ⊆ 𝑠 ) )
100 99 imbi2d ( ( ( 𝑟 ∈ V ↦ 𝑛 ∈ ℕ0 ( 𝑟𝑟 𝑛 ) ) ‘ 𝑅 ) = 𝑛 ∈ ℕ0 ( 𝑅𝑟 𝑛 ) → ( ( ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠𝑅𝑠 ∧ ( 𝑠𝑠 ) ⊆ 𝑠 ) → ( ( 𝑟 ∈ V ↦ 𝑛 ∈ ℕ0 ( 𝑟𝑟 𝑛 ) ) ‘ 𝑅 ) ⊆ 𝑠 ) ↔ ( ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠𝑅𝑠 ∧ ( 𝑠𝑠 ) ⊆ 𝑠 ) → 𝑛 ∈ ℕ0 ( 𝑅𝑟 𝑛 ) ⊆ 𝑠 ) ) )
101 98 100 syl5ibr ( ( ( 𝑟 ∈ V ↦ 𝑛 ∈ ℕ0 ( 𝑟𝑟 𝑛 ) ) ‘ 𝑅 ) = 𝑛 ∈ ℕ0 ( 𝑅𝑟 𝑛 ) → ( ( 𝜑𝑅 ∈ V ) → ( ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠𝑅𝑠 ∧ ( 𝑠𝑠 ) ⊆ 𝑠 ) → ( ( 𝑟 ∈ V ↦ 𝑛 ∈ ℕ0 ( 𝑟𝑟 𝑛 ) ) ‘ 𝑅 ) ⊆ 𝑠 ) ) )
102 11 101 mpcom ( ( 𝜑𝑅 ∈ V ) → ( ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠𝑅𝑠 ∧ ( 𝑠𝑠 ) ⊆ 𝑠 ) → ( ( 𝑟 ∈ V ↦ 𝑛 ∈ ℕ0 ( 𝑟𝑟 𝑛 ) ) ‘ 𝑅 ) ⊆ 𝑠 ) )
103 df-rtrclrec t*rec = ( 𝑟 ∈ V ↦ 𝑛 ∈ ℕ0 ( 𝑟𝑟 𝑛 ) )
104 fveq1 ( t*rec = ( 𝑟 ∈ V ↦ 𝑛 ∈ ℕ0 ( 𝑟𝑟 𝑛 ) ) → ( t*rec ‘ 𝑅 ) = ( ( 𝑟 ∈ V ↦ 𝑛 ∈ ℕ0 ( 𝑟𝑟 𝑛 ) ) ‘ 𝑅 ) )
105 104 sseq1d ( t*rec = ( 𝑟 ∈ V ↦ 𝑛 ∈ ℕ0 ( 𝑟𝑟 𝑛 ) ) → ( ( t*rec ‘ 𝑅 ) ⊆ 𝑠 ↔ ( ( 𝑟 ∈ V ↦ 𝑛 ∈ ℕ0 ( 𝑟𝑟 𝑛 ) ) ‘ 𝑅 ) ⊆ 𝑠 ) )
106 105 imbi2d ( t*rec = ( 𝑟 ∈ V ↦ 𝑛 ∈ ℕ0 ( 𝑟𝑟 𝑛 ) ) → ( ( ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠𝑅𝑠 ∧ ( 𝑠𝑠 ) ⊆ 𝑠 ) → ( t*rec ‘ 𝑅 ) ⊆ 𝑠 ) ↔ ( ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠𝑅𝑠 ∧ ( 𝑠𝑠 ) ⊆ 𝑠 ) → ( ( 𝑟 ∈ V ↦ 𝑛 ∈ ℕ0 ( 𝑟𝑟 𝑛 ) ) ‘ 𝑅 ) ⊆ 𝑠 ) ) )
107 106 imbi2d ( t*rec = ( 𝑟 ∈ V ↦ 𝑛 ∈ ℕ0 ( 𝑟𝑟 𝑛 ) ) → ( ( ( 𝜑𝑅 ∈ V ) → ( ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠𝑅𝑠 ∧ ( 𝑠𝑠 ) ⊆ 𝑠 ) → ( t*rec ‘ 𝑅 ) ⊆ 𝑠 ) ) ↔ ( ( 𝜑𝑅 ∈ V ) → ( ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠𝑅𝑠 ∧ ( 𝑠𝑠 ) ⊆ 𝑠 ) → ( ( 𝑟 ∈ V ↦ 𝑛 ∈ ℕ0 ( 𝑟𝑟 𝑛 ) ) ‘ 𝑅 ) ⊆ 𝑠 ) ) ) )
108 103 107 ax-mp ( ( ( 𝜑𝑅 ∈ V ) → ( ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠𝑅𝑠 ∧ ( 𝑠𝑠 ) ⊆ 𝑠 ) → ( t*rec ‘ 𝑅 ) ⊆ 𝑠 ) ) ↔ ( ( 𝜑𝑅 ∈ V ) → ( ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠𝑅𝑠 ∧ ( 𝑠𝑠 ) ⊆ 𝑠 ) → ( ( 𝑟 ∈ V ↦ 𝑛 ∈ ℕ0 ( 𝑟𝑟 𝑛 ) ) ‘ 𝑅 ) ⊆ 𝑠 ) ) )
109 102 108 mpbir ( ( 𝜑𝑅 ∈ V ) → ( ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠𝑅𝑠 ∧ ( 𝑠𝑠 ) ⊆ 𝑠 ) → ( t*rec ‘ 𝑅 ) ⊆ 𝑠 ) )
110 109 ex ( 𝜑 → ( 𝑅 ∈ V → ( ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠𝑅𝑠 ∧ ( 𝑠𝑠 ) ⊆ 𝑠 ) → ( t*rec ‘ 𝑅 ) ⊆ 𝑠 ) ) )
111 fvprc ( ¬ 𝑅 ∈ V → ( t*rec ‘ 𝑅 ) = ∅ )
112 0ss ∅ ⊆ 𝑠
113 111 112 eqsstrdi ( ¬ 𝑅 ∈ V → ( t*rec ‘ 𝑅 ) ⊆ 𝑠 )
114 113 a1d ( ¬ 𝑅 ∈ V → ( ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠𝑅𝑠 ∧ ( 𝑠𝑠 ) ⊆ 𝑠 ) → ( t*rec ‘ 𝑅 ) ⊆ 𝑠 ) )
115 110 114 pm2.61d1 ( 𝜑 → ( ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠𝑅𝑠 ∧ ( 𝑠𝑠 ) ⊆ 𝑠 ) → ( t*rec ‘ 𝑅 ) ⊆ 𝑠 ) )
116 115 alrimiv ( 𝜑 → ∀ 𝑠 ( ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠𝑅𝑠 ∧ ( 𝑠𝑠 ) ⊆ 𝑠 ) → ( t*rec ‘ 𝑅 ) ⊆ 𝑠 ) )