Step |
Hyp |
Ref |
Expression |
1 |
|
dfrtrcl2.1 |
⊢ ( 𝜑 → Rel 𝑅 ) |
2 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑅 ∈ V ) → ( 𝑥 ∈ V ↦ ∩ { 𝑧 ∣ ( ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ⊆ 𝑧 ∧ 𝑥 ⊆ 𝑧 ∧ ( 𝑧 ∘ 𝑧 ) ⊆ 𝑧 ) } ) = ( 𝑥 ∈ V ↦ ∩ { 𝑧 ∣ ( ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ⊆ 𝑧 ∧ 𝑥 ⊆ 𝑧 ∧ ( 𝑧 ∘ 𝑧 ) ⊆ 𝑧 ) } ) ) |
3 |
|
dmeq |
⊢ ( 𝑥 = 𝑅 → dom 𝑥 = dom 𝑅 ) |
4 |
|
rneq |
⊢ ( 𝑥 = 𝑅 → ran 𝑥 = ran 𝑅 ) |
5 |
3 4
|
uneq12d |
⊢ ( 𝑥 = 𝑅 → ( dom 𝑥 ∪ ran 𝑥 ) = ( dom 𝑅 ∪ ran 𝑅 ) ) |
6 |
5
|
reseq2d |
⊢ ( 𝑥 = 𝑅 → ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) = ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ) |
7 |
6
|
sseq1d |
⊢ ( 𝑥 = 𝑅 → ( ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ⊆ 𝑧 ↔ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑧 ) ) |
8 |
|
id |
⊢ ( 𝑥 = 𝑅 → 𝑥 = 𝑅 ) |
9 |
8
|
sseq1d |
⊢ ( 𝑥 = 𝑅 → ( 𝑥 ⊆ 𝑧 ↔ 𝑅 ⊆ 𝑧 ) ) |
10 |
7 9
|
3anbi12d |
⊢ ( 𝑥 = 𝑅 → ( ( ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ⊆ 𝑧 ∧ 𝑥 ⊆ 𝑧 ∧ ( 𝑧 ∘ 𝑧 ) ⊆ 𝑧 ) ↔ ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑧 ∧ 𝑅 ⊆ 𝑧 ∧ ( 𝑧 ∘ 𝑧 ) ⊆ 𝑧 ) ) ) |
11 |
10
|
abbidv |
⊢ ( 𝑥 = 𝑅 → { 𝑧 ∣ ( ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ⊆ 𝑧 ∧ 𝑥 ⊆ 𝑧 ∧ ( 𝑧 ∘ 𝑧 ) ⊆ 𝑧 ) } = { 𝑧 ∣ ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑧 ∧ 𝑅 ⊆ 𝑧 ∧ ( 𝑧 ∘ 𝑧 ) ⊆ 𝑧 ) } ) |
12 |
11
|
inteqd |
⊢ ( 𝑥 = 𝑅 → ∩ { 𝑧 ∣ ( ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ⊆ 𝑧 ∧ 𝑥 ⊆ 𝑧 ∧ ( 𝑧 ∘ 𝑧 ) ⊆ 𝑧 ) } = ∩ { 𝑧 ∣ ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑧 ∧ 𝑅 ⊆ 𝑧 ∧ ( 𝑧 ∘ 𝑧 ) ⊆ 𝑧 ) } ) |
13 |
12
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑅 ∈ V ) ∧ 𝑥 = 𝑅 ) → ∩ { 𝑧 ∣ ( ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ⊆ 𝑧 ∧ 𝑥 ⊆ 𝑧 ∧ ( 𝑧 ∘ 𝑧 ) ⊆ 𝑧 ) } = ∩ { 𝑧 ∣ ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑧 ∧ 𝑅 ⊆ 𝑧 ∧ ( 𝑧 ∘ 𝑧 ) ⊆ 𝑧 ) } ) |
14 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑅 ∈ V ) → 𝑅 ∈ V ) |
15 |
|
relfld |
⊢ ( Rel 𝑅 → ∪ ∪ 𝑅 = ( dom 𝑅 ∪ ran 𝑅 ) ) |
16 |
1 15
|
syl |
⊢ ( 𝜑 → ∪ ∪ 𝑅 = ( dom 𝑅 ∪ ran 𝑅 ) ) |
17 |
16
|
eqcomd |
⊢ ( 𝜑 → ( dom 𝑅 ∪ ran 𝑅 ) = ∪ ∪ 𝑅 ) |
18 |
17
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑅 ∈ V ) → ( dom 𝑅 ∪ ran 𝑅 ) = ∪ ∪ 𝑅 ) |
19 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑅 ∈ V ) → Rel 𝑅 ) |
20 |
19 14
|
rtrclreclem2 |
⊢ ( ( 𝜑 ∧ 𝑅 ∈ V ) → ( I ↾ ∪ ∪ 𝑅 ) ⊆ ( t*rec ‘ 𝑅 ) ) |
21 |
|
id |
⊢ ( ( dom 𝑅 ∪ ran 𝑅 ) = ∪ ∪ 𝑅 → ( dom 𝑅 ∪ ran 𝑅 ) = ∪ ∪ 𝑅 ) |
22 |
21
|
reseq2d |
⊢ ( ( dom 𝑅 ∪ ran 𝑅 ) = ∪ ∪ 𝑅 → ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) = ( I ↾ ∪ ∪ 𝑅 ) ) |
23 |
22
|
sseq1d |
⊢ ( ( dom 𝑅 ∪ ran 𝑅 ) = ∪ ∪ 𝑅 → ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ ( t*rec ‘ 𝑅 ) ↔ ( I ↾ ∪ ∪ 𝑅 ) ⊆ ( t*rec ‘ 𝑅 ) ) ) |
24 |
20 23
|
syl5ibr |
⊢ ( ( dom 𝑅 ∪ ran 𝑅 ) = ∪ ∪ 𝑅 → ( ( 𝜑 ∧ 𝑅 ∈ V ) → ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ ( t*rec ‘ 𝑅 ) ) ) |
25 |
18 24
|
mpcom |
⊢ ( ( 𝜑 ∧ 𝑅 ∈ V ) → ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ ( t*rec ‘ 𝑅 ) ) |
26 |
14
|
rtrclreclem1 |
⊢ ( ( 𝜑 ∧ 𝑅 ∈ V ) → 𝑅 ⊆ ( t*rec ‘ 𝑅 ) ) |
27 |
1
|
rtrclreclem3 |
⊢ ( 𝜑 → ( ( t*rec ‘ 𝑅 ) ∘ ( t*rec ‘ 𝑅 ) ) ⊆ ( t*rec ‘ 𝑅 ) ) |
28 |
27
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑅 ∈ V ) → ( ( t*rec ‘ 𝑅 ) ∘ ( t*rec ‘ 𝑅 ) ) ⊆ ( t*rec ‘ 𝑅 ) ) |
29 |
|
fvex |
⊢ ( t*rec ‘ 𝑅 ) ∈ V |
30 |
|
sseq2 |
⊢ ( 𝑧 = ( t*rec ‘ 𝑅 ) → ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑧 ↔ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ ( t*rec ‘ 𝑅 ) ) ) |
31 |
|
sseq2 |
⊢ ( 𝑧 = ( t*rec ‘ 𝑅 ) → ( 𝑅 ⊆ 𝑧 ↔ 𝑅 ⊆ ( t*rec ‘ 𝑅 ) ) ) |
32 |
|
id |
⊢ ( 𝑧 = ( t*rec ‘ 𝑅 ) → 𝑧 = ( t*rec ‘ 𝑅 ) ) |
33 |
32 32
|
coeq12d |
⊢ ( 𝑧 = ( t*rec ‘ 𝑅 ) → ( 𝑧 ∘ 𝑧 ) = ( ( t*rec ‘ 𝑅 ) ∘ ( t*rec ‘ 𝑅 ) ) ) |
34 |
33 32
|
sseq12d |
⊢ ( 𝑧 = ( t*rec ‘ 𝑅 ) → ( ( 𝑧 ∘ 𝑧 ) ⊆ 𝑧 ↔ ( ( t*rec ‘ 𝑅 ) ∘ ( t*rec ‘ 𝑅 ) ) ⊆ ( t*rec ‘ 𝑅 ) ) ) |
35 |
30 31 34
|
3anbi123d |
⊢ ( 𝑧 = ( t*rec ‘ 𝑅 ) → ( ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑧 ∧ 𝑅 ⊆ 𝑧 ∧ ( 𝑧 ∘ 𝑧 ) ⊆ 𝑧 ) ↔ ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ ( t*rec ‘ 𝑅 ) ∧ 𝑅 ⊆ ( t*rec ‘ 𝑅 ) ∧ ( ( t*rec ‘ 𝑅 ) ∘ ( t*rec ‘ 𝑅 ) ) ⊆ ( t*rec ‘ 𝑅 ) ) ) ) |
36 |
35
|
a1i |
⊢ ( 𝜑 → ( 𝑧 = ( t*rec ‘ 𝑅 ) → ( ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑧 ∧ 𝑅 ⊆ 𝑧 ∧ ( 𝑧 ∘ 𝑧 ) ⊆ 𝑧 ) ↔ ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ ( t*rec ‘ 𝑅 ) ∧ 𝑅 ⊆ ( t*rec ‘ 𝑅 ) ∧ ( ( t*rec ‘ 𝑅 ) ∘ ( t*rec ‘ 𝑅 ) ) ⊆ ( t*rec ‘ 𝑅 ) ) ) ) ) |
37 |
36
|
alrimiv |
⊢ ( 𝜑 → ∀ 𝑧 ( 𝑧 = ( t*rec ‘ 𝑅 ) → ( ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑧 ∧ 𝑅 ⊆ 𝑧 ∧ ( 𝑧 ∘ 𝑧 ) ⊆ 𝑧 ) ↔ ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ ( t*rec ‘ 𝑅 ) ∧ 𝑅 ⊆ ( t*rec ‘ 𝑅 ) ∧ ( ( t*rec ‘ 𝑅 ) ∘ ( t*rec ‘ 𝑅 ) ) ⊆ ( t*rec ‘ 𝑅 ) ) ) ) ) |
38 |
|
elabgt |
⊢ ( ( ( t*rec ‘ 𝑅 ) ∈ V ∧ ∀ 𝑧 ( 𝑧 = ( t*rec ‘ 𝑅 ) → ( ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑧 ∧ 𝑅 ⊆ 𝑧 ∧ ( 𝑧 ∘ 𝑧 ) ⊆ 𝑧 ) ↔ ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ ( t*rec ‘ 𝑅 ) ∧ 𝑅 ⊆ ( t*rec ‘ 𝑅 ) ∧ ( ( t*rec ‘ 𝑅 ) ∘ ( t*rec ‘ 𝑅 ) ) ⊆ ( t*rec ‘ 𝑅 ) ) ) ) ) → ( ( t*rec ‘ 𝑅 ) ∈ { 𝑧 ∣ ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑧 ∧ 𝑅 ⊆ 𝑧 ∧ ( 𝑧 ∘ 𝑧 ) ⊆ 𝑧 ) } ↔ ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ ( t*rec ‘ 𝑅 ) ∧ 𝑅 ⊆ ( t*rec ‘ 𝑅 ) ∧ ( ( t*rec ‘ 𝑅 ) ∘ ( t*rec ‘ 𝑅 ) ) ⊆ ( t*rec ‘ 𝑅 ) ) ) ) |
39 |
29 37 38
|
sylancr |
⊢ ( 𝜑 → ( ( t*rec ‘ 𝑅 ) ∈ { 𝑧 ∣ ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑧 ∧ 𝑅 ⊆ 𝑧 ∧ ( 𝑧 ∘ 𝑧 ) ⊆ 𝑧 ) } ↔ ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ ( t*rec ‘ 𝑅 ) ∧ 𝑅 ⊆ ( t*rec ‘ 𝑅 ) ∧ ( ( t*rec ‘ 𝑅 ) ∘ ( t*rec ‘ 𝑅 ) ) ⊆ ( t*rec ‘ 𝑅 ) ) ) ) |
40 |
39
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑅 ∈ V ) → ( ( t*rec ‘ 𝑅 ) ∈ { 𝑧 ∣ ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑧 ∧ 𝑅 ⊆ 𝑧 ∧ ( 𝑧 ∘ 𝑧 ) ⊆ 𝑧 ) } ↔ ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ ( t*rec ‘ 𝑅 ) ∧ 𝑅 ⊆ ( t*rec ‘ 𝑅 ) ∧ ( ( t*rec ‘ 𝑅 ) ∘ ( t*rec ‘ 𝑅 ) ) ⊆ ( t*rec ‘ 𝑅 ) ) ) ) |
41 |
25 26 28 40
|
mpbir3and |
⊢ ( ( 𝜑 ∧ 𝑅 ∈ V ) → ( t*rec ‘ 𝑅 ) ∈ { 𝑧 ∣ ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑧 ∧ 𝑅 ⊆ 𝑧 ∧ ( 𝑧 ∘ 𝑧 ) ⊆ 𝑧 ) } ) |
42 |
41
|
ne0d |
⊢ ( ( 𝜑 ∧ 𝑅 ∈ V ) → { 𝑧 ∣ ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑧 ∧ 𝑅 ⊆ 𝑧 ∧ ( 𝑧 ∘ 𝑧 ) ⊆ 𝑧 ) } ≠ ∅ ) |
43 |
|
intex |
⊢ ( { 𝑧 ∣ ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑧 ∧ 𝑅 ⊆ 𝑧 ∧ ( 𝑧 ∘ 𝑧 ) ⊆ 𝑧 ) } ≠ ∅ ↔ ∩ { 𝑧 ∣ ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑧 ∧ 𝑅 ⊆ 𝑧 ∧ ( 𝑧 ∘ 𝑧 ) ⊆ 𝑧 ) } ∈ V ) |
44 |
42 43
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑅 ∈ V ) → ∩ { 𝑧 ∣ ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑧 ∧ 𝑅 ⊆ 𝑧 ∧ ( 𝑧 ∘ 𝑧 ) ⊆ 𝑧 ) } ∈ V ) |
45 |
2 13 14 44
|
fvmptd |
⊢ ( ( 𝜑 ∧ 𝑅 ∈ V ) → ( ( 𝑥 ∈ V ↦ ∩ { 𝑧 ∣ ( ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ⊆ 𝑧 ∧ 𝑥 ⊆ 𝑧 ∧ ( 𝑧 ∘ 𝑧 ) ⊆ 𝑧 ) } ) ‘ 𝑅 ) = ∩ { 𝑧 ∣ ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑧 ∧ 𝑅 ⊆ 𝑧 ∧ ( 𝑧 ∘ 𝑧 ) ⊆ 𝑧 ) } ) |
46 |
|
intss1 |
⊢ ( ( t*rec ‘ 𝑅 ) ∈ { 𝑧 ∣ ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑧 ∧ 𝑅 ⊆ 𝑧 ∧ ( 𝑧 ∘ 𝑧 ) ⊆ 𝑧 ) } → ∩ { 𝑧 ∣ ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑧 ∧ 𝑅 ⊆ 𝑧 ∧ ( 𝑧 ∘ 𝑧 ) ⊆ 𝑧 ) } ⊆ ( t*rec ‘ 𝑅 ) ) |
47 |
41 46
|
syl |
⊢ ( ( 𝜑 ∧ 𝑅 ∈ V ) → ∩ { 𝑧 ∣ ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑧 ∧ 𝑅 ⊆ 𝑧 ∧ ( 𝑧 ∘ 𝑧 ) ⊆ 𝑧 ) } ⊆ ( t*rec ‘ 𝑅 ) ) |
48 |
|
vex |
⊢ 𝑠 ∈ V |
49 |
|
sseq2 |
⊢ ( 𝑧 = 𝑠 → ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑧 ↔ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) |
50 |
|
sseq2 |
⊢ ( 𝑧 = 𝑠 → ( 𝑅 ⊆ 𝑧 ↔ 𝑅 ⊆ 𝑠 ) ) |
51 |
|
id |
⊢ ( 𝑧 = 𝑠 → 𝑧 = 𝑠 ) |
52 |
51 51
|
coeq12d |
⊢ ( 𝑧 = 𝑠 → ( 𝑧 ∘ 𝑧 ) = ( 𝑠 ∘ 𝑠 ) ) |
53 |
52 51
|
sseq12d |
⊢ ( 𝑧 = 𝑠 → ( ( 𝑧 ∘ 𝑧 ) ⊆ 𝑧 ↔ ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ) ) |
54 |
49 50 53
|
3anbi123d |
⊢ ( 𝑧 = 𝑠 → ( ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑧 ∧ 𝑅 ⊆ 𝑧 ∧ ( 𝑧 ∘ 𝑧 ) ⊆ 𝑧 ) ↔ ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ∧ 𝑅 ⊆ 𝑠 ∧ ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ) ) ) |
55 |
48 54
|
elab |
⊢ ( 𝑠 ∈ { 𝑧 ∣ ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑧 ∧ 𝑅 ⊆ 𝑧 ∧ ( 𝑧 ∘ 𝑧 ) ⊆ 𝑧 ) } ↔ ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ∧ 𝑅 ⊆ 𝑠 ∧ ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ) ) |
56 |
1
|
rtrclreclem4 |
⊢ ( 𝜑 → ∀ 𝑠 ( ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ∧ 𝑅 ⊆ 𝑠 ∧ ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ) → ( t*rec ‘ 𝑅 ) ⊆ 𝑠 ) ) |
57 |
56
|
19.21bi |
⊢ ( 𝜑 → ( ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ∧ 𝑅 ⊆ 𝑠 ∧ ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ) → ( t*rec ‘ 𝑅 ) ⊆ 𝑠 ) ) |
58 |
55 57
|
syl5bi |
⊢ ( 𝜑 → ( 𝑠 ∈ { 𝑧 ∣ ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑧 ∧ 𝑅 ⊆ 𝑧 ∧ ( 𝑧 ∘ 𝑧 ) ⊆ 𝑧 ) } → ( t*rec ‘ 𝑅 ) ⊆ 𝑠 ) ) |
59 |
58
|
ralrimiv |
⊢ ( 𝜑 → ∀ 𝑠 ∈ { 𝑧 ∣ ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑧 ∧ 𝑅 ⊆ 𝑧 ∧ ( 𝑧 ∘ 𝑧 ) ⊆ 𝑧 ) } ( t*rec ‘ 𝑅 ) ⊆ 𝑠 ) |
60 |
|
ssint |
⊢ ( ( t*rec ‘ 𝑅 ) ⊆ ∩ { 𝑧 ∣ ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑧 ∧ 𝑅 ⊆ 𝑧 ∧ ( 𝑧 ∘ 𝑧 ) ⊆ 𝑧 ) } ↔ ∀ 𝑠 ∈ { 𝑧 ∣ ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑧 ∧ 𝑅 ⊆ 𝑧 ∧ ( 𝑧 ∘ 𝑧 ) ⊆ 𝑧 ) } ( t*rec ‘ 𝑅 ) ⊆ 𝑠 ) |
61 |
59 60
|
sylibr |
⊢ ( 𝜑 → ( t*rec ‘ 𝑅 ) ⊆ ∩ { 𝑧 ∣ ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑧 ∧ 𝑅 ⊆ 𝑧 ∧ ( 𝑧 ∘ 𝑧 ) ⊆ 𝑧 ) } ) |
62 |
61
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑅 ∈ V ) → ( t*rec ‘ 𝑅 ) ⊆ ∩ { 𝑧 ∣ ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑧 ∧ 𝑅 ⊆ 𝑧 ∧ ( 𝑧 ∘ 𝑧 ) ⊆ 𝑧 ) } ) |
63 |
47 62
|
eqssd |
⊢ ( ( 𝜑 ∧ 𝑅 ∈ V ) → ∩ { 𝑧 ∣ ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑧 ∧ 𝑅 ⊆ 𝑧 ∧ ( 𝑧 ∘ 𝑧 ) ⊆ 𝑧 ) } = ( t*rec ‘ 𝑅 ) ) |
64 |
45 63
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑅 ∈ V ) → ( ( 𝑥 ∈ V ↦ ∩ { 𝑧 ∣ ( ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ⊆ 𝑧 ∧ 𝑥 ⊆ 𝑧 ∧ ( 𝑧 ∘ 𝑧 ) ⊆ 𝑧 ) } ) ‘ 𝑅 ) = ( t*rec ‘ 𝑅 ) ) |
65 |
|
df-rtrcl |
⊢ t* = ( 𝑥 ∈ V ↦ ∩ { 𝑧 ∣ ( ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ⊆ 𝑧 ∧ 𝑥 ⊆ 𝑧 ∧ ( 𝑧 ∘ 𝑧 ) ⊆ 𝑧 ) } ) |
66 |
|
fveq1 |
⊢ ( t* = ( 𝑥 ∈ V ↦ ∩ { 𝑧 ∣ ( ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ⊆ 𝑧 ∧ 𝑥 ⊆ 𝑧 ∧ ( 𝑧 ∘ 𝑧 ) ⊆ 𝑧 ) } ) → ( t* ‘ 𝑅 ) = ( ( 𝑥 ∈ V ↦ ∩ { 𝑧 ∣ ( ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ⊆ 𝑧 ∧ 𝑥 ⊆ 𝑧 ∧ ( 𝑧 ∘ 𝑧 ) ⊆ 𝑧 ) } ) ‘ 𝑅 ) ) |
67 |
66
|
eqeq1d |
⊢ ( t* = ( 𝑥 ∈ V ↦ ∩ { 𝑧 ∣ ( ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ⊆ 𝑧 ∧ 𝑥 ⊆ 𝑧 ∧ ( 𝑧 ∘ 𝑧 ) ⊆ 𝑧 ) } ) → ( ( t* ‘ 𝑅 ) = ( t*rec ‘ 𝑅 ) ↔ ( ( 𝑥 ∈ V ↦ ∩ { 𝑧 ∣ ( ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ⊆ 𝑧 ∧ 𝑥 ⊆ 𝑧 ∧ ( 𝑧 ∘ 𝑧 ) ⊆ 𝑧 ) } ) ‘ 𝑅 ) = ( t*rec ‘ 𝑅 ) ) ) |
68 |
67
|
imbi2d |
⊢ ( t* = ( 𝑥 ∈ V ↦ ∩ { 𝑧 ∣ ( ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ⊆ 𝑧 ∧ 𝑥 ⊆ 𝑧 ∧ ( 𝑧 ∘ 𝑧 ) ⊆ 𝑧 ) } ) → ( ( ( 𝜑 ∧ 𝑅 ∈ V ) → ( t* ‘ 𝑅 ) = ( t*rec ‘ 𝑅 ) ) ↔ ( ( 𝜑 ∧ 𝑅 ∈ V ) → ( ( 𝑥 ∈ V ↦ ∩ { 𝑧 ∣ ( ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ⊆ 𝑧 ∧ 𝑥 ⊆ 𝑧 ∧ ( 𝑧 ∘ 𝑧 ) ⊆ 𝑧 ) } ) ‘ 𝑅 ) = ( t*rec ‘ 𝑅 ) ) ) ) |
69 |
65 68
|
ax-mp |
⊢ ( ( ( 𝜑 ∧ 𝑅 ∈ V ) → ( t* ‘ 𝑅 ) = ( t*rec ‘ 𝑅 ) ) ↔ ( ( 𝜑 ∧ 𝑅 ∈ V ) → ( ( 𝑥 ∈ V ↦ ∩ { 𝑧 ∣ ( ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ⊆ 𝑧 ∧ 𝑥 ⊆ 𝑧 ∧ ( 𝑧 ∘ 𝑧 ) ⊆ 𝑧 ) } ) ‘ 𝑅 ) = ( t*rec ‘ 𝑅 ) ) ) |
70 |
64 69
|
mpbir |
⊢ ( ( 𝜑 ∧ 𝑅 ∈ V ) → ( t* ‘ 𝑅 ) = ( t*rec ‘ 𝑅 ) ) |
71 |
70
|
ex |
⊢ ( 𝜑 → ( 𝑅 ∈ V → ( t* ‘ 𝑅 ) = ( t*rec ‘ 𝑅 ) ) ) |
72 |
|
fvprc |
⊢ ( ¬ 𝑅 ∈ V → ( t* ‘ 𝑅 ) = ∅ ) |
73 |
|
fvprc |
⊢ ( ¬ 𝑅 ∈ V → ( t*rec ‘ 𝑅 ) = ∅ ) |
74 |
73
|
eqcomd |
⊢ ( ¬ 𝑅 ∈ V → ∅ = ( t*rec ‘ 𝑅 ) ) |
75 |
72 74
|
eqtrd |
⊢ ( ¬ 𝑅 ∈ V → ( t* ‘ 𝑅 ) = ( t*rec ‘ 𝑅 ) ) |
76 |
71 75
|
pm2.61d1 |
⊢ ( 𝜑 → ( t* ‘ 𝑅 ) = ( t*rec ‘ 𝑅 ) ) |