| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dfrtrcl2.1 |
⊢ ( 𝜑 → Rel 𝑅 ) |
| 2 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑅 ∈ V ) → ( 𝑥 ∈ V ↦ ∩ { 𝑧 ∣ ( ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ⊆ 𝑧 ∧ 𝑥 ⊆ 𝑧 ∧ ( 𝑧 ∘ 𝑧 ) ⊆ 𝑧 ) } ) = ( 𝑥 ∈ V ↦ ∩ { 𝑧 ∣ ( ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ⊆ 𝑧 ∧ 𝑥 ⊆ 𝑧 ∧ ( 𝑧 ∘ 𝑧 ) ⊆ 𝑧 ) } ) ) |
| 3 |
|
dmeq |
⊢ ( 𝑥 = 𝑅 → dom 𝑥 = dom 𝑅 ) |
| 4 |
|
rneq |
⊢ ( 𝑥 = 𝑅 → ran 𝑥 = ran 𝑅 ) |
| 5 |
3 4
|
uneq12d |
⊢ ( 𝑥 = 𝑅 → ( dom 𝑥 ∪ ran 𝑥 ) = ( dom 𝑅 ∪ ran 𝑅 ) ) |
| 6 |
5
|
reseq2d |
⊢ ( 𝑥 = 𝑅 → ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) = ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ) |
| 7 |
6
|
sseq1d |
⊢ ( 𝑥 = 𝑅 → ( ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ⊆ 𝑧 ↔ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑧 ) ) |
| 8 |
|
id |
⊢ ( 𝑥 = 𝑅 → 𝑥 = 𝑅 ) |
| 9 |
8
|
sseq1d |
⊢ ( 𝑥 = 𝑅 → ( 𝑥 ⊆ 𝑧 ↔ 𝑅 ⊆ 𝑧 ) ) |
| 10 |
7 9
|
3anbi12d |
⊢ ( 𝑥 = 𝑅 → ( ( ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ⊆ 𝑧 ∧ 𝑥 ⊆ 𝑧 ∧ ( 𝑧 ∘ 𝑧 ) ⊆ 𝑧 ) ↔ ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑧 ∧ 𝑅 ⊆ 𝑧 ∧ ( 𝑧 ∘ 𝑧 ) ⊆ 𝑧 ) ) ) |
| 11 |
10
|
abbidv |
⊢ ( 𝑥 = 𝑅 → { 𝑧 ∣ ( ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ⊆ 𝑧 ∧ 𝑥 ⊆ 𝑧 ∧ ( 𝑧 ∘ 𝑧 ) ⊆ 𝑧 ) } = { 𝑧 ∣ ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑧 ∧ 𝑅 ⊆ 𝑧 ∧ ( 𝑧 ∘ 𝑧 ) ⊆ 𝑧 ) } ) |
| 12 |
11
|
inteqd |
⊢ ( 𝑥 = 𝑅 → ∩ { 𝑧 ∣ ( ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ⊆ 𝑧 ∧ 𝑥 ⊆ 𝑧 ∧ ( 𝑧 ∘ 𝑧 ) ⊆ 𝑧 ) } = ∩ { 𝑧 ∣ ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑧 ∧ 𝑅 ⊆ 𝑧 ∧ ( 𝑧 ∘ 𝑧 ) ⊆ 𝑧 ) } ) |
| 13 |
12
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑅 ∈ V ) ∧ 𝑥 = 𝑅 ) → ∩ { 𝑧 ∣ ( ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ⊆ 𝑧 ∧ 𝑥 ⊆ 𝑧 ∧ ( 𝑧 ∘ 𝑧 ) ⊆ 𝑧 ) } = ∩ { 𝑧 ∣ ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑧 ∧ 𝑅 ⊆ 𝑧 ∧ ( 𝑧 ∘ 𝑧 ) ⊆ 𝑧 ) } ) |
| 14 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑅 ∈ V ) → 𝑅 ∈ V ) |
| 15 |
|
relfld |
⊢ ( Rel 𝑅 → ∪ ∪ 𝑅 = ( dom 𝑅 ∪ ran 𝑅 ) ) |
| 16 |
1 15
|
syl |
⊢ ( 𝜑 → ∪ ∪ 𝑅 = ( dom 𝑅 ∪ ran 𝑅 ) ) |
| 17 |
16
|
eqcomd |
⊢ ( 𝜑 → ( dom 𝑅 ∪ ran 𝑅 ) = ∪ ∪ 𝑅 ) |
| 18 |
17
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑅 ∈ V ) → ( dom 𝑅 ∪ ran 𝑅 ) = ∪ ∪ 𝑅 ) |
| 19 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑅 ∈ V ) → Rel 𝑅 ) |
| 20 |
19 14
|
rtrclreclem2 |
⊢ ( ( 𝜑 ∧ 𝑅 ∈ V ) → ( I ↾ ∪ ∪ 𝑅 ) ⊆ ( t*rec ‘ 𝑅 ) ) |
| 21 |
|
id |
⊢ ( ( dom 𝑅 ∪ ran 𝑅 ) = ∪ ∪ 𝑅 → ( dom 𝑅 ∪ ran 𝑅 ) = ∪ ∪ 𝑅 ) |
| 22 |
21
|
reseq2d |
⊢ ( ( dom 𝑅 ∪ ran 𝑅 ) = ∪ ∪ 𝑅 → ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) = ( I ↾ ∪ ∪ 𝑅 ) ) |
| 23 |
22
|
sseq1d |
⊢ ( ( dom 𝑅 ∪ ran 𝑅 ) = ∪ ∪ 𝑅 → ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ ( t*rec ‘ 𝑅 ) ↔ ( I ↾ ∪ ∪ 𝑅 ) ⊆ ( t*rec ‘ 𝑅 ) ) ) |
| 24 |
20 23
|
imbitrrid |
⊢ ( ( dom 𝑅 ∪ ran 𝑅 ) = ∪ ∪ 𝑅 → ( ( 𝜑 ∧ 𝑅 ∈ V ) → ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ ( t*rec ‘ 𝑅 ) ) ) |
| 25 |
18 24
|
mpcom |
⊢ ( ( 𝜑 ∧ 𝑅 ∈ V ) → ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ ( t*rec ‘ 𝑅 ) ) |
| 26 |
14
|
rtrclreclem1 |
⊢ ( ( 𝜑 ∧ 𝑅 ∈ V ) → 𝑅 ⊆ ( t*rec ‘ 𝑅 ) ) |
| 27 |
1
|
rtrclreclem3 |
⊢ ( 𝜑 → ( ( t*rec ‘ 𝑅 ) ∘ ( t*rec ‘ 𝑅 ) ) ⊆ ( t*rec ‘ 𝑅 ) ) |
| 28 |
27
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑅 ∈ V ) → ( ( t*rec ‘ 𝑅 ) ∘ ( t*rec ‘ 𝑅 ) ) ⊆ ( t*rec ‘ 𝑅 ) ) |
| 29 |
|
fvex |
⊢ ( t*rec ‘ 𝑅 ) ∈ V |
| 30 |
|
sseq2 |
⊢ ( 𝑧 = ( t*rec ‘ 𝑅 ) → ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑧 ↔ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ ( t*rec ‘ 𝑅 ) ) ) |
| 31 |
|
sseq2 |
⊢ ( 𝑧 = ( t*rec ‘ 𝑅 ) → ( 𝑅 ⊆ 𝑧 ↔ 𝑅 ⊆ ( t*rec ‘ 𝑅 ) ) ) |
| 32 |
|
id |
⊢ ( 𝑧 = ( t*rec ‘ 𝑅 ) → 𝑧 = ( t*rec ‘ 𝑅 ) ) |
| 33 |
32 32
|
coeq12d |
⊢ ( 𝑧 = ( t*rec ‘ 𝑅 ) → ( 𝑧 ∘ 𝑧 ) = ( ( t*rec ‘ 𝑅 ) ∘ ( t*rec ‘ 𝑅 ) ) ) |
| 34 |
33 32
|
sseq12d |
⊢ ( 𝑧 = ( t*rec ‘ 𝑅 ) → ( ( 𝑧 ∘ 𝑧 ) ⊆ 𝑧 ↔ ( ( t*rec ‘ 𝑅 ) ∘ ( t*rec ‘ 𝑅 ) ) ⊆ ( t*rec ‘ 𝑅 ) ) ) |
| 35 |
30 31 34
|
3anbi123d |
⊢ ( 𝑧 = ( t*rec ‘ 𝑅 ) → ( ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑧 ∧ 𝑅 ⊆ 𝑧 ∧ ( 𝑧 ∘ 𝑧 ) ⊆ 𝑧 ) ↔ ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ ( t*rec ‘ 𝑅 ) ∧ 𝑅 ⊆ ( t*rec ‘ 𝑅 ) ∧ ( ( t*rec ‘ 𝑅 ) ∘ ( t*rec ‘ 𝑅 ) ) ⊆ ( t*rec ‘ 𝑅 ) ) ) ) |
| 36 |
35
|
a1i |
⊢ ( 𝜑 → ( 𝑧 = ( t*rec ‘ 𝑅 ) → ( ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑧 ∧ 𝑅 ⊆ 𝑧 ∧ ( 𝑧 ∘ 𝑧 ) ⊆ 𝑧 ) ↔ ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ ( t*rec ‘ 𝑅 ) ∧ 𝑅 ⊆ ( t*rec ‘ 𝑅 ) ∧ ( ( t*rec ‘ 𝑅 ) ∘ ( t*rec ‘ 𝑅 ) ) ⊆ ( t*rec ‘ 𝑅 ) ) ) ) ) |
| 37 |
36
|
alrimiv |
⊢ ( 𝜑 → ∀ 𝑧 ( 𝑧 = ( t*rec ‘ 𝑅 ) → ( ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑧 ∧ 𝑅 ⊆ 𝑧 ∧ ( 𝑧 ∘ 𝑧 ) ⊆ 𝑧 ) ↔ ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ ( t*rec ‘ 𝑅 ) ∧ 𝑅 ⊆ ( t*rec ‘ 𝑅 ) ∧ ( ( t*rec ‘ 𝑅 ) ∘ ( t*rec ‘ 𝑅 ) ) ⊆ ( t*rec ‘ 𝑅 ) ) ) ) ) |
| 38 |
|
elabgt |
⊢ ( ( ( t*rec ‘ 𝑅 ) ∈ V ∧ ∀ 𝑧 ( 𝑧 = ( t*rec ‘ 𝑅 ) → ( ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑧 ∧ 𝑅 ⊆ 𝑧 ∧ ( 𝑧 ∘ 𝑧 ) ⊆ 𝑧 ) ↔ ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ ( t*rec ‘ 𝑅 ) ∧ 𝑅 ⊆ ( t*rec ‘ 𝑅 ) ∧ ( ( t*rec ‘ 𝑅 ) ∘ ( t*rec ‘ 𝑅 ) ) ⊆ ( t*rec ‘ 𝑅 ) ) ) ) ) → ( ( t*rec ‘ 𝑅 ) ∈ { 𝑧 ∣ ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑧 ∧ 𝑅 ⊆ 𝑧 ∧ ( 𝑧 ∘ 𝑧 ) ⊆ 𝑧 ) } ↔ ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ ( t*rec ‘ 𝑅 ) ∧ 𝑅 ⊆ ( t*rec ‘ 𝑅 ) ∧ ( ( t*rec ‘ 𝑅 ) ∘ ( t*rec ‘ 𝑅 ) ) ⊆ ( t*rec ‘ 𝑅 ) ) ) ) |
| 39 |
29 37 38
|
sylancr |
⊢ ( 𝜑 → ( ( t*rec ‘ 𝑅 ) ∈ { 𝑧 ∣ ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑧 ∧ 𝑅 ⊆ 𝑧 ∧ ( 𝑧 ∘ 𝑧 ) ⊆ 𝑧 ) } ↔ ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ ( t*rec ‘ 𝑅 ) ∧ 𝑅 ⊆ ( t*rec ‘ 𝑅 ) ∧ ( ( t*rec ‘ 𝑅 ) ∘ ( t*rec ‘ 𝑅 ) ) ⊆ ( t*rec ‘ 𝑅 ) ) ) ) |
| 40 |
39
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑅 ∈ V ) → ( ( t*rec ‘ 𝑅 ) ∈ { 𝑧 ∣ ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑧 ∧ 𝑅 ⊆ 𝑧 ∧ ( 𝑧 ∘ 𝑧 ) ⊆ 𝑧 ) } ↔ ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ ( t*rec ‘ 𝑅 ) ∧ 𝑅 ⊆ ( t*rec ‘ 𝑅 ) ∧ ( ( t*rec ‘ 𝑅 ) ∘ ( t*rec ‘ 𝑅 ) ) ⊆ ( t*rec ‘ 𝑅 ) ) ) ) |
| 41 |
25 26 28 40
|
mpbir3and |
⊢ ( ( 𝜑 ∧ 𝑅 ∈ V ) → ( t*rec ‘ 𝑅 ) ∈ { 𝑧 ∣ ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑧 ∧ 𝑅 ⊆ 𝑧 ∧ ( 𝑧 ∘ 𝑧 ) ⊆ 𝑧 ) } ) |
| 42 |
41
|
ne0d |
⊢ ( ( 𝜑 ∧ 𝑅 ∈ V ) → { 𝑧 ∣ ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑧 ∧ 𝑅 ⊆ 𝑧 ∧ ( 𝑧 ∘ 𝑧 ) ⊆ 𝑧 ) } ≠ ∅ ) |
| 43 |
|
intex |
⊢ ( { 𝑧 ∣ ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑧 ∧ 𝑅 ⊆ 𝑧 ∧ ( 𝑧 ∘ 𝑧 ) ⊆ 𝑧 ) } ≠ ∅ ↔ ∩ { 𝑧 ∣ ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑧 ∧ 𝑅 ⊆ 𝑧 ∧ ( 𝑧 ∘ 𝑧 ) ⊆ 𝑧 ) } ∈ V ) |
| 44 |
42 43
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑅 ∈ V ) → ∩ { 𝑧 ∣ ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑧 ∧ 𝑅 ⊆ 𝑧 ∧ ( 𝑧 ∘ 𝑧 ) ⊆ 𝑧 ) } ∈ V ) |
| 45 |
2 13 14 44
|
fvmptd |
⊢ ( ( 𝜑 ∧ 𝑅 ∈ V ) → ( ( 𝑥 ∈ V ↦ ∩ { 𝑧 ∣ ( ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ⊆ 𝑧 ∧ 𝑥 ⊆ 𝑧 ∧ ( 𝑧 ∘ 𝑧 ) ⊆ 𝑧 ) } ) ‘ 𝑅 ) = ∩ { 𝑧 ∣ ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑧 ∧ 𝑅 ⊆ 𝑧 ∧ ( 𝑧 ∘ 𝑧 ) ⊆ 𝑧 ) } ) |
| 46 |
|
intss1 |
⊢ ( ( t*rec ‘ 𝑅 ) ∈ { 𝑧 ∣ ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑧 ∧ 𝑅 ⊆ 𝑧 ∧ ( 𝑧 ∘ 𝑧 ) ⊆ 𝑧 ) } → ∩ { 𝑧 ∣ ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑧 ∧ 𝑅 ⊆ 𝑧 ∧ ( 𝑧 ∘ 𝑧 ) ⊆ 𝑧 ) } ⊆ ( t*rec ‘ 𝑅 ) ) |
| 47 |
41 46
|
syl |
⊢ ( ( 𝜑 ∧ 𝑅 ∈ V ) → ∩ { 𝑧 ∣ ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑧 ∧ 𝑅 ⊆ 𝑧 ∧ ( 𝑧 ∘ 𝑧 ) ⊆ 𝑧 ) } ⊆ ( t*rec ‘ 𝑅 ) ) |
| 48 |
|
vex |
⊢ 𝑠 ∈ V |
| 49 |
|
sseq2 |
⊢ ( 𝑧 = 𝑠 → ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑧 ↔ ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ) ) |
| 50 |
|
sseq2 |
⊢ ( 𝑧 = 𝑠 → ( 𝑅 ⊆ 𝑧 ↔ 𝑅 ⊆ 𝑠 ) ) |
| 51 |
|
id |
⊢ ( 𝑧 = 𝑠 → 𝑧 = 𝑠 ) |
| 52 |
51 51
|
coeq12d |
⊢ ( 𝑧 = 𝑠 → ( 𝑧 ∘ 𝑧 ) = ( 𝑠 ∘ 𝑠 ) ) |
| 53 |
52 51
|
sseq12d |
⊢ ( 𝑧 = 𝑠 → ( ( 𝑧 ∘ 𝑧 ) ⊆ 𝑧 ↔ ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ) ) |
| 54 |
49 50 53
|
3anbi123d |
⊢ ( 𝑧 = 𝑠 → ( ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑧 ∧ 𝑅 ⊆ 𝑧 ∧ ( 𝑧 ∘ 𝑧 ) ⊆ 𝑧 ) ↔ ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ∧ 𝑅 ⊆ 𝑠 ∧ ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ) ) ) |
| 55 |
48 54
|
elab |
⊢ ( 𝑠 ∈ { 𝑧 ∣ ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑧 ∧ 𝑅 ⊆ 𝑧 ∧ ( 𝑧 ∘ 𝑧 ) ⊆ 𝑧 ) } ↔ ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ∧ 𝑅 ⊆ 𝑠 ∧ ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ) ) |
| 56 |
1
|
rtrclreclem4 |
⊢ ( 𝜑 → ∀ 𝑠 ( ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ∧ 𝑅 ⊆ 𝑠 ∧ ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ) → ( t*rec ‘ 𝑅 ) ⊆ 𝑠 ) ) |
| 57 |
56
|
19.21bi |
⊢ ( 𝜑 → ( ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑠 ∧ 𝑅 ⊆ 𝑠 ∧ ( 𝑠 ∘ 𝑠 ) ⊆ 𝑠 ) → ( t*rec ‘ 𝑅 ) ⊆ 𝑠 ) ) |
| 58 |
55 57
|
biimtrid |
⊢ ( 𝜑 → ( 𝑠 ∈ { 𝑧 ∣ ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑧 ∧ 𝑅 ⊆ 𝑧 ∧ ( 𝑧 ∘ 𝑧 ) ⊆ 𝑧 ) } → ( t*rec ‘ 𝑅 ) ⊆ 𝑠 ) ) |
| 59 |
58
|
ralrimiv |
⊢ ( 𝜑 → ∀ 𝑠 ∈ { 𝑧 ∣ ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑧 ∧ 𝑅 ⊆ 𝑧 ∧ ( 𝑧 ∘ 𝑧 ) ⊆ 𝑧 ) } ( t*rec ‘ 𝑅 ) ⊆ 𝑠 ) |
| 60 |
|
ssint |
⊢ ( ( t*rec ‘ 𝑅 ) ⊆ ∩ { 𝑧 ∣ ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑧 ∧ 𝑅 ⊆ 𝑧 ∧ ( 𝑧 ∘ 𝑧 ) ⊆ 𝑧 ) } ↔ ∀ 𝑠 ∈ { 𝑧 ∣ ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑧 ∧ 𝑅 ⊆ 𝑧 ∧ ( 𝑧 ∘ 𝑧 ) ⊆ 𝑧 ) } ( t*rec ‘ 𝑅 ) ⊆ 𝑠 ) |
| 61 |
59 60
|
sylibr |
⊢ ( 𝜑 → ( t*rec ‘ 𝑅 ) ⊆ ∩ { 𝑧 ∣ ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑧 ∧ 𝑅 ⊆ 𝑧 ∧ ( 𝑧 ∘ 𝑧 ) ⊆ 𝑧 ) } ) |
| 62 |
61
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑅 ∈ V ) → ( t*rec ‘ 𝑅 ) ⊆ ∩ { 𝑧 ∣ ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑧 ∧ 𝑅 ⊆ 𝑧 ∧ ( 𝑧 ∘ 𝑧 ) ⊆ 𝑧 ) } ) |
| 63 |
47 62
|
eqssd |
⊢ ( ( 𝜑 ∧ 𝑅 ∈ V ) → ∩ { 𝑧 ∣ ( ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ 𝑧 ∧ 𝑅 ⊆ 𝑧 ∧ ( 𝑧 ∘ 𝑧 ) ⊆ 𝑧 ) } = ( t*rec ‘ 𝑅 ) ) |
| 64 |
45 63
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑅 ∈ V ) → ( ( 𝑥 ∈ V ↦ ∩ { 𝑧 ∣ ( ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ⊆ 𝑧 ∧ 𝑥 ⊆ 𝑧 ∧ ( 𝑧 ∘ 𝑧 ) ⊆ 𝑧 ) } ) ‘ 𝑅 ) = ( t*rec ‘ 𝑅 ) ) |
| 65 |
|
df-rtrcl |
⊢ t* = ( 𝑥 ∈ V ↦ ∩ { 𝑧 ∣ ( ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ⊆ 𝑧 ∧ 𝑥 ⊆ 𝑧 ∧ ( 𝑧 ∘ 𝑧 ) ⊆ 𝑧 ) } ) |
| 66 |
|
fveq1 |
⊢ ( t* = ( 𝑥 ∈ V ↦ ∩ { 𝑧 ∣ ( ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ⊆ 𝑧 ∧ 𝑥 ⊆ 𝑧 ∧ ( 𝑧 ∘ 𝑧 ) ⊆ 𝑧 ) } ) → ( t* ‘ 𝑅 ) = ( ( 𝑥 ∈ V ↦ ∩ { 𝑧 ∣ ( ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ⊆ 𝑧 ∧ 𝑥 ⊆ 𝑧 ∧ ( 𝑧 ∘ 𝑧 ) ⊆ 𝑧 ) } ) ‘ 𝑅 ) ) |
| 67 |
66
|
eqeq1d |
⊢ ( t* = ( 𝑥 ∈ V ↦ ∩ { 𝑧 ∣ ( ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ⊆ 𝑧 ∧ 𝑥 ⊆ 𝑧 ∧ ( 𝑧 ∘ 𝑧 ) ⊆ 𝑧 ) } ) → ( ( t* ‘ 𝑅 ) = ( t*rec ‘ 𝑅 ) ↔ ( ( 𝑥 ∈ V ↦ ∩ { 𝑧 ∣ ( ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ⊆ 𝑧 ∧ 𝑥 ⊆ 𝑧 ∧ ( 𝑧 ∘ 𝑧 ) ⊆ 𝑧 ) } ) ‘ 𝑅 ) = ( t*rec ‘ 𝑅 ) ) ) |
| 68 |
67
|
imbi2d |
⊢ ( t* = ( 𝑥 ∈ V ↦ ∩ { 𝑧 ∣ ( ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ⊆ 𝑧 ∧ 𝑥 ⊆ 𝑧 ∧ ( 𝑧 ∘ 𝑧 ) ⊆ 𝑧 ) } ) → ( ( ( 𝜑 ∧ 𝑅 ∈ V ) → ( t* ‘ 𝑅 ) = ( t*rec ‘ 𝑅 ) ) ↔ ( ( 𝜑 ∧ 𝑅 ∈ V ) → ( ( 𝑥 ∈ V ↦ ∩ { 𝑧 ∣ ( ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ⊆ 𝑧 ∧ 𝑥 ⊆ 𝑧 ∧ ( 𝑧 ∘ 𝑧 ) ⊆ 𝑧 ) } ) ‘ 𝑅 ) = ( t*rec ‘ 𝑅 ) ) ) ) |
| 69 |
65 68
|
ax-mp |
⊢ ( ( ( 𝜑 ∧ 𝑅 ∈ V ) → ( t* ‘ 𝑅 ) = ( t*rec ‘ 𝑅 ) ) ↔ ( ( 𝜑 ∧ 𝑅 ∈ V ) → ( ( 𝑥 ∈ V ↦ ∩ { 𝑧 ∣ ( ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ⊆ 𝑧 ∧ 𝑥 ⊆ 𝑧 ∧ ( 𝑧 ∘ 𝑧 ) ⊆ 𝑧 ) } ) ‘ 𝑅 ) = ( t*rec ‘ 𝑅 ) ) ) |
| 70 |
64 69
|
mpbir |
⊢ ( ( 𝜑 ∧ 𝑅 ∈ V ) → ( t* ‘ 𝑅 ) = ( t*rec ‘ 𝑅 ) ) |
| 71 |
70
|
ex |
⊢ ( 𝜑 → ( 𝑅 ∈ V → ( t* ‘ 𝑅 ) = ( t*rec ‘ 𝑅 ) ) ) |
| 72 |
|
fvprc |
⊢ ( ¬ 𝑅 ∈ V → ( t* ‘ 𝑅 ) = ∅ ) |
| 73 |
|
fvprc |
⊢ ( ¬ 𝑅 ∈ V → ( t*rec ‘ 𝑅 ) = ∅ ) |
| 74 |
73
|
eqcomd |
⊢ ( ¬ 𝑅 ∈ V → ∅ = ( t*rec ‘ 𝑅 ) ) |
| 75 |
72 74
|
eqtrd |
⊢ ( ¬ 𝑅 ∈ V → ( t* ‘ 𝑅 ) = ( t*rec ‘ 𝑅 ) ) |
| 76 |
71 75
|
pm2.61d1 |
⊢ ( 𝜑 → ( t* ‘ 𝑅 ) = ( t*rec ‘ 𝑅 ) ) |