Metamath Proof Explorer


Theorem dfrtrcl2

Description: The two definitions t* and t*rec of the reflexive, transitive closure coincide if R is indeed a relation. (Contributed by Drahflow, 12-Nov-2015) (Revised by RP, 30-May-2020) (Revised by AV, 13-Jul-2024)

Ref Expression
Hypothesis dfrtrcl2.1 φ Rel R
Assertion dfrtrcl2 φ t* R = t*rec R

Proof

Step Hyp Ref Expression
1 dfrtrcl2.1 φ Rel R
2 eqidd φ R V x V z | I dom x ran x z x z z z z = x V z | I dom x ran x z x z z z z
3 dmeq x = R dom x = dom R
4 rneq x = R ran x = ran R
5 3 4 uneq12d x = R dom x ran x = dom R ran R
6 5 reseq2d x = R I dom x ran x = I dom R ran R
7 6 sseq1d x = R I dom x ran x z I dom R ran R z
8 id x = R x = R
9 8 sseq1d x = R x z R z
10 7 9 3anbi12d x = R I dom x ran x z x z z z z I dom R ran R z R z z z z
11 10 abbidv x = R z | I dom x ran x z x z z z z = z | I dom R ran R z R z z z z
12 11 inteqd x = R z | I dom x ran x z x z z z z = z | I dom R ran R z R z z z z
13 12 adantl φ R V x = R z | I dom x ran x z x z z z z = z | I dom R ran R z R z z z z
14 simpr φ R V R V
15 relfld Rel R R = dom R ran R
16 1 15 syl φ R = dom R ran R
17 16 eqcomd φ dom R ran R = R
18 17 adantr φ R V dom R ran R = R
19 1 adantr φ R V Rel R
20 19 14 rtrclreclem2 φ R V I R t*rec R
21 id dom R ran R = R dom R ran R = R
22 21 reseq2d dom R ran R = R I dom R ran R = I R
23 22 sseq1d dom R ran R = R I dom R ran R t*rec R I R t*rec R
24 20 23 syl5ibr dom R ran R = R φ R V I dom R ran R t*rec R
25 18 24 mpcom φ R V I dom R ran R t*rec R
26 14 rtrclreclem1 φ R V R t*rec R
27 1 rtrclreclem3 φ t*rec R t*rec R t*rec R
28 27 adantr φ R V t*rec R t*rec R t*rec R
29 fvex t*rec R V
30 sseq2 z = t*rec R I dom R ran R z I dom R ran R t*rec R
31 sseq2 z = t*rec R R z R t*rec R
32 id z = t*rec R z = t*rec R
33 32 32 coeq12d z = t*rec R z z = t*rec R t*rec R
34 33 32 sseq12d z = t*rec R z z z t*rec R t*rec R t*rec R
35 30 31 34 3anbi123d z = t*rec R I dom R ran R z R z z z z I dom R ran R t*rec R R t*rec R t*rec R t*rec R t*rec R
36 35 a1i φ z = t*rec R I dom R ran R z R z z z z I dom R ran R t*rec R R t*rec R t*rec R t*rec R t*rec R
37 36 alrimiv φ z z = t*rec R I dom R ran R z R z z z z I dom R ran R t*rec R R t*rec R t*rec R t*rec R t*rec R
38 elabgt t*rec R V z z = t*rec R I dom R ran R z R z z z z I dom R ran R t*rec R R t*rec R t*rec R t*rec R t*rec R t*rec R z | I dom R ran R z R z z z z I dom R ran R t*rec R R t*rec R t*rec R t*rec R t*rec R
39 29 37 38 sylancr φ t*rec R z | I dom R ran R z R z z z z I dom R ran R t*rec R R t*rec R t*rec R t*rec R t*rec R
40 39 adantr φ R V t*rec R z | I dom R ran R z R z z z z I dom R ran R t*rec R R t*rec R t*rec R t*rec R t*rec R
41 25 26 28 40 mpbir3and φ R V t*rec R z | I dom R ran R z R z z z z
42 41 ne0d φ R V z | I dom R ran R z R z z z z
43 intex z | I dom R ran R z R z z z z z | I dom R ran R z R z z z z V
44 42 43 sylib φ R V z | I dom R ran R z R z z z z V
45 2 13 14 44 fvmptd φ R V x V z | I dom x ran x z x z z z z R = z | I dom R ran R z R z z z z
46 intss1 t*rec R z | I dom R ran R z R z z z z z | I dom R ran R z R z z z z t*rec R
47 41 46 syl φ R V z | I dom R ran R z R z z z z t*rec R
48 vex s V
49 sseq2 z = s I dom R ran R z I dom R ran R s
50 sseq2 z = s R z R s
51 id z = s z = s
52 51 51 coeq12d z = s z z = s s
53 52 51 sseq12d z = s z z z s s s
54 49 50 53 3anbi123d z = s I dom R ran R z R z z z z I dom R ran R s R s s s s
55 48 54 elab s z | I dom R ran R z R z z z z I dom R ran R s R s s s s
56 1 rtrclreclem4 φ s I dom R ran R s R s s s s t*rec R s
57 56 19.21bi φ I dom R ran R s R s s s s t*rec R s
58 55 57 syl5bi φ s z | I dom R ran R z R z z z z t*rec R s
59 58 ralrimiv φ s z | I dom R ran R z R z z z z t*rec R s
60 ssint t*rec R z | I dom R ran R z R z z z z s z | I dom R ran R z R z z z z t*rec R s
61 59 60 sylibr φ t*rec R z | I dom R ran R z R z z z z
62 61 adantr φ R V t*rec R z | I dom R ran R z R z z z z
63 47 62 eqssd φ R V z | I dom R ran R z R z z z z = t*rec R
64 45 63 eqtrd φ R V x V z | I dom x ran x z x z z z z R = t*rec R
65 df-rtrcl t* = x V z | I dom x ran x z x z z z z
66 fveq1 t* = x V z | I dom x ran x z x z z z z t* R = x V z | I dom x ran x z x z z z z R
67 66 eqeq1d t* = x V z | I dom x ran x z x z z z z t* R = t*rec R x V z | I dom x ran x z x z z z z R = t*rec R
68 67 imbi2d t* = x V z | I dom x ran x z x z z z z φ R V t* R = t*rec R φ R V x V z | I dom x ran x z x z z z z R = t*rec R
69 65 68 ax-mp φ R V t* R = t*rec R φ R V x V z | I dom x ran x z x z z z z R = t*rec R
70 64 69 mpbir φ R V t* R = t*rec R
71 70 ex φ R V t* R = t*rec R
72 fvprc ¬ R V t* R =
73 fvprc ¬ R V t*rec R =
74 73 eqcomd ¬ R V = t*rec R
75 72 74 eqtrd ¬ R V t* R = t*rec R
76 71 75 pm2.61d1 φ t* R = t*rec R