Step |
Hyp |
Ref |
Expression |
1 |
|
dfrtrcl2.1 |
|
2 |
|
eqidd |
|
3 |
|
dmeq |
|
4 |
|
rneq |
|
5 |
3 4
|
uneq12d |
|
6 |
5
|
reseq2d |
|
7 |
6
|
sseq1d |
|
8 |
|
id |
|
9 |
8
|
sseq1d |
|
10 |
7 9
|
3anbi12d |
|
11 |
10
|
abbidv |
|
12 |
11
|
inteqd |
|
13 |
12
|
adantl |
|
14 |
|
simpr |
|
15 |
|
relfld |
|
16 |
1 15
|
syl |
|
17 |
16
|
eqcomd |
|
18 |
17
|
adantr |
|
19 |
1
|
adantr |
|
20 |
19 14
|
rtrclreclem2 |
|
21 |
|
id |
|
22 |
21
|
reseq2d |
|
23 |
22
|
sseq1d |
|
24 |
20 23
|
syl5ibr |
|
25 |
18 24
|
mpcom |
|
26 |
14
|
rtrclreclem1 |
|
27 |
1
|
rtrclreclem3 |
|
28 |
27
|
adantr |
|
29 |
|
fvex |
|
30 |
|
sseq2 |
|
31 |
|
sseq2 |
|
32 |
|
id |
|
33 |
32 32
|
coeq12d |
|
34 |
33 32
|
sseq12d |
|
35 |
30 31 34
|
3anbi123d |
|
36 |
35
|
a1i |
|
37 |
36
|
alrimiv |
|
38 |
|
elabgt |
|
39 |
29 37 38
|
sylancr |
|
40 |
39
|
adantr |
|
41 |
25 26 28 40
|
mpbir3and |
|
42 |
41
|
ne0d |
|
43 |
|
intex |
|
44 |
42 43
|
sylib |
|
45 |
2 13 14 44
|
fvmptd |
|
46 |
|
intss1 |
|
47 |
41 46
|
syl |
|
48 |
|
vex |
|
49 |
|
sseq2 |
|
50 |
|
sseq2 |
|
51 |
|
id |
|
52 |
51 51
|
coeq12d |
|
53 |
52 51
|
sseq12d |
|
54 |
49 50 53
|
3anbi123d |
|
55 |
48 54
|
elab |
|
56 |
1
|
rtrclreclem4 |
|
57 |
56
|
19.21bi |
|
58 |
55 57
|
syl5bi |
|
59 |
58
|
ralrimiv |
|
60 |
|
ssint |
|
61 |
59 60
|
sylibr |
|
62 |
61
|
adantr |
|
63 |
47 62
|
eqssd |
|
64 |
45 63
|
eqtrd |
|
65 |
|
df-rtrcl |
|
66 |
|
fveq1 |
|
67 |
66
|
eqeq1d |
|
68 |
67
|
imbi2d |
|
69 |
65 68
|
ax-mp |
|
70 |
64 69
|
mpbir |
|
71 |
70
|
ex |
|
72 |
|
fvprc |
|
73 |
|
fvprc |
|
74 |
73
|
eqcomd |
|
75 |
72 74
|
eqtrd |
|
76 |
71 75
|
pm2.61d1 |
|