Metamath Proof Explorer


Theorem relexpindlem

Description: Principle of transitive induction, finite and non-class version. The first three hypotheses give various existences, the next three give necessary substitutions and the last two are the basis and the induction hypothesis. (Contributed by Drahflow, 12-Nov-2015) (Revised by RP, 30-May-2020) (Proof shortened by Peter Mazsa, 2-Oct-2022) (Revised by AV, 13-Jul-2024)

Ref Expression
Hypotheses relexpindlem.1 ( 𝜂 → Rel 𝑅 )
relexpindlem.2 ( 𝜂𝑆𝑉 )
relexpindlem.3 ( 𝑖 = 𝑆 → ( 𝜑𝜒 ) )
relexpindlem.4 ( 𝑖 = 𝑥 → ( 𝜑𝜓 ) )
relexpindlem.5 ( 𝑖 = 𝑗 → ( 𝜑𝜃 ) )
relexpindlem.6 ( 𝜂𝜒 )
relexpindlem.7 ( 𝜂 → ( 𝑗 𝑅 𝑥 → ( 𝜃𝜓 ) ) )
Assertion relexpindlem ( 𝜂 → ( 𝑛 ∈ ℕ0 → ( 𝑆 ( 𝑅𝑟 𝑛 ) 𝑥𝜓 ) ) )

Proof

Step Hyp Ref Expression
1 relexpindlem.1 ( 𝜂 → Rel 𝑅 )
2 relexpindlem.2 ( 𝜂𝑆𝑉 )
3 relexpindlem.3 ( 𝑖 = 𝑆 → ( 𝜑𝜒 ) )
4 relexpindlem.4 ( 𝑖 = 𝑥 → ( 𝜑𝜓 ) )
5 relexpindlem.5 ( 𝑖 = 𝑗 → ( 𝜑𝜃 ) )
6 relexpindlem.6 ( 𝜂𝜒 )
7 relexpindlem.7 ( 𝜂 → ( 𝑗 𝑅 𝑥 → ( 𝜃𝜓 ) ) )
8 eleq1 ( 𝑘 = 0 → ( 𝑘 ∈ ℕ0 ↔ 0 ∈ ℕ0 ) )
9 8 anbi2d ( 𝑘 = 0 → ( ( ( 𝜂𝑅 ∈ V ) ∧ 𝑘 ∈ ℕ0 ) ↔ ( ( 𝜂𝑅 ∈ V ) ∧ 0 ∈ ℕ0 ) ) )
10 oveq2 ( 𝑘 = 0 → ( 𝑅𝑟 𝑘 ) = ( 𝑅𝑟 0 ) )
11 10 breqd ( 𝑘 = 0 → ( 𝑆 ( 𝑅𝑟 𝑘 ) 𝑥𝑆 ( 𝑅𝑟 0 ) 𝑥 ) )
12 11 imbi1d ( 𝑘 = 0 → ( ( 𝑆 ( 𝑅𝑟 𝑘 ) 𝑥𝜓 ) ↔ ( 𝑆 ( 𝑅𝑟 0 ) 𝑥𝜓 ) ) )
13 12 albidv ( 𝑘 = 0 → ( ∀ 𝑥 ( 𝑆 ( 𝑅𝑟 𝑘 ) 𝑥𝜓 ) ↔ ∀ 𝑥 ( 𝑆 ( 𝑅𝑟 0 ) 𝑥𝜓 ) ) )
14 9 13 imbi12d ( 𝑘 = 0 → ( ( ( ( 𝜂𝑅 ∈ V ) ∧ 𝑘 ∈ ℕ0 ) → ∀ 𝑥 ( 𝑆 ( 𝑅𝑟 𝑘 ) 𝑥𝜓 ) ) ↔ ( ( ( 𝜂𝑅 ∈ V ) ∧ 0 ∈ ℕ0 ) → ∀ 𝑥 ( 𝑆 ( 𝑅𝑟 0 ) 𝑥𝜓 ) ) ) )
15 eleq1 ( 𝑘 = 𝑙 → ( 𝑘 ∈ ℕ0𝑙 ∈ ℕ0 ) )
16 15 anbi2d ( 𝑘 = 𝑙 → ( ( ( 𝜂𝑅 ∈ V ) ∧ 𝑘 ∈ ℕ0 ) ↔ ( ( 𝜂𝑅 ∈ V ) ∧ 𝑙 ∈ ℕ0 ) ) )
17 oveq2 ( 𝑘 = 𝑙 → ( 𝑅𝑟 𝑘 ) = ( 𝑅𝑟 𝑙 ) )
18 17 breqd ( 𝑘 = 𝑙 → ( 𝑆 ( 𝑅𝑟 𝑘 ) 𝑥𝑆 ( 𝑅𝑟 𝑙 ) 𝑥 ) )
19 18 imbi1d ( 𝑘 = 𝑙 → ( ( 𝑆 ( 𝑅𝑟 𝑘 ) 𝑥𝜓 ) ↔ ( 𝑆 ( 𝑅𝑟 𝑙 ) 𝑥𝜓 ) ) )
20 19 albidv ( 𝑘 = 𝑙 → ( ∀ 𝑥 ( 𝑆 ( 𝑅𝑟 𝑘 ) 𝑥𝜓 ) ↔ ∀ 𝑥 ( 𝑆 ( 𝑅𝑟 𝑙 ) 𝑥𝜓 ) ) )
21 16 20 imbi12d ( 𝑘 = 𝑙 → ( ( ( ( 𝜂𝑅 ∈ V ) ∧ 𝑘 ∈ ℕ0 ) → ∀ 𝑥 ( 𝑆 ( 𝑅𝑟 𝑘 ) 𝑥𝜓 ) ) ↔ ( ( ( 𝜂𝑅 ∈ V ) ∧ 𝑙 ∈ ℕ0 ) → ∀ 𝑥 ( 𝑆 ( 𝑅𝑟 𝑙 ) 𝑥𝜓 ) ) ) )
22 eleq1 ( 𝑘 = ( 𝑙 + 1 ) → ( 𝑘 ∈ ℕ0 ↔ ( 𝑙 + 1 ) ∈ ℕ0 ) )
23 22 anbi2d ( 𝑘 = ( 𝑙 + 1 ) → ( ( ( 𝜂𝑅 ∈ V ) ∧ 𝑘 ∈ ℕ0 ) ↔ ( ( 𝜂𝑅 ∈ V ) ∧ ( 𝑙 + 1 ) ∈ ℕ0 ) ) )
24 oveq2 ( 𝑘 = ( 𝑙 + 1 ) → ( 𝑅𝑟 𝑘 ) = ( 𝑅𝑟 ( 𝑙 + 1 ) ) )
25 24 breqd ( 𝑘 = ( 𝑙 + 1 ) → ( 𝑆 ( 𝑅𝑟 𝑘 ) 𝑥𝑆 ( 𝑅𝑟 ( 𝑙 + 1 ) ) 𝑥 ) )
26 25 imbi1d ( 𝑘 = ( 𝑙 + 1 ) → ( ( 𝑆 ( 𝑅𝑟 𝑘 ) 𝑥𝜓 ) ↔ ( 𝑆 ( 𝑅𝑟 ( 𝑙 + 1 ) ) 𝑥𝜓 ) ) )
27 26 albidv ( 𝑘 = ( 𝑙 + 1 ) → ( ∀ 𝑥 ( 𝑆 ( 𝑅𝑟 𝑘 ) 𝑥𝜓 ) ↔ ∀ 𝑥 ( 𝑆 ( 𝑅𝑟 ( 𝑙 + 1 ) ) 𝑥𝜓 ) ) )
28 23 27 imbi12d ( 𝑘 = ( 𝑙 + 1 ) → ( ( ( ( 𝜂𝑅 ∈ V ) ∧ 𝑘 ∈ ℕ0 ) → ∀ 𝑥 ( 𝑆 ( 𝑅𝑟 𝑘 ) 𝑥𝜓 ) ) ↔ ( ( ( 𝜂𝑅 ∈ V ) ∧ ( 𝑙 + 1 ) ∈ ℕ0 ) → ∀ 𝑥 ( 𝑆 ( 𝑅𝑟 ( 𝑙 + 1 ) ) 𝑥𝜓 ) ) ) )
29 eleq1 ( 𝑘 = 𝑛 → ( 𝑘 ∈ ℕ0𝑛 ∈ ℕ0 ) )
30 29 anbi2d ( 𝑘 = 𝑛 → ( ( ( 𝜂𝑅 ∈ V ) ∧ 𝑘 ∈ ℕ0 ) ↔ ( ( 𝜂𝑅 ∈ V ) ∧ 𝑛 ∈ ℕ0 ) ) )
31 oveq2 ( 𝑘 = 𝑛 → ( 𝑅𝑟 𝑘 ) = ( 𝑅𝑟 𝑛 ) )
32 31 breqd ( 𝑘 = 𝑛 → ( 𝑆 ( 𝑅𝑟 𝑘 ) 𝑥𝑆 ( 𝑅𝑟 𝑛 ) 𝑥 ) )
33 32 imbi1d ( 𝑘 = 𝑛 → ( ( 𝑆 ( 𝑅𝑟 𝑘 ) 𝑥𝜓 ) ↔ ( 𝑆 ( 𝑅𝑟 𝑛 ) 𝑥𝜓 ) ) )
34 33 albidv ( 𝑘 = 𝑛 → ( ∀ 𝑥 ( 𝑆 ( 𝑅𝑟 𝑘 ) 𝑥𝜓 ) ↔ ∀ 𝑥 ( 𝑆 ( 𝑅𝑟 𝑛 ) 𝑥𝜓 ) ) )
35 30 34 imbi12d ( 𝑘 = 𝑛 → ( ( ( ( 𝜂𝑅 ∈ V ) ∧ 𝑘 ∈ ℕ0 ) → ∀ 𝑥 ( 𝑆 ( 𝑅𝑟 𝑘 ) 𝑥𝜓 ) ) ↔ ( ( ( 𝜂𝑅 ∈ V ) ∧ 𝑛 ∈ ℕ0 ) → ∀ 𝑥 ( 𝑆 ( 𝑅𝑟 𝑛 ) 𝑥𝜓 ) ) ) )
36 1 anim1ci ( ( 𝜂𝑅 ∈ V ) → ( 𝑅 ∈ V ∧ Rel 𝑅 ) )
37 36 adantr ( ( ( 𝜂𝑅 ∈ V ) ∧ 0 ∈ ℕ0 ) → ( 𝑅 ∈ V ∧ Rel 𝑅 ) )
38 relexp0 ( ( 𝑅 ∈ V ∧ Rel 𝑅 ) → ( 𝑅𝑟 0 ) = ( I ↾ 𝑅 ) )
39 37 38 syl ( ( ( 𝜂𝑅 ∈ V ) ∧ 0 ∈ ℕ0 ) → ( 𝑅𝑟 0 ) = ( I ↾ 𝑅 ) )
40 6 adantr ( ( 𝜂𝑅 ∈ V ) → 𝜒 )
41 simpl ( ( ( 𝜂𝑅 ∈ V ) ∧ 0 ∈ ℕ0 ) → ( 𝜂𝑅 ∈ V ) )
42 2 ad2antrl ( ( 𝜒 ∧ ( 𝜂𝑅 ∈ V ) ) → 𝑆𝑉 )
43 simprl ( ( 𝑖 = 𝑆 ∧ ( ( 𝜂𝑅 ∈ V ) ∧ ( 𝜑𝑖 = 𝑆 ) ) ) → ( 𝜂𝑅 ∈ V ) )
44 43 40 jccil ( ( 𝑖 = 𝑆 ∧ ( ( 𝜂𝑅 ∈ V ) ∧ ( 𝜑𝑖 = 𝑆 ) ) ) → ( 𝜒 ∧ ( 𝜂𝑅 ∈ V ) ) )
45 44 expcom ( ( ( 𝜂𝑅 ∈ V ) ∧ ( 𝜑𝑖 = 𝑆 ) ) → ( 𝑖 = 𝑆 → ( 𝜒 ∧ ( 𝜂𝑅 ∈ V ) ) ) )
46 45 expcom ( ( 𝜑𝑖 = 𝑆 ) → ( ( 𝜂𝑅 ∈ V ) → ( 𝑖 = 𝑆 → ( 𝜒 ∧ ( 𝜂𝑅 ∈ V ) ) ) ) )
47 46 expcom ( 𝑖 = 𝑆 → ( 𝜑 → ( ( 𝜂𝑅 ∈ V ) → ( 𝑖 = 𝑆 → ( 𝜒 ∧ ( 𝜂𝑅 ∈ V ) ) ) ) ) )
48 47 3imp1 ( ( ( 𝑖 = 𝑆𝜑 ∧ ( 𝜂𝑅 ∈ V ) ) ∧ 𝑖 = 𝑆 ) → ( 𝜒 ∧ ( 𝜂𝑅 ∈ V ) ) )
49 48 expcom ( 𝑖 = 𝑆 → ( ( 𝑖 = 𝑆𝜑 ∧ ( 𝜂𝑅 ∈ V ) ) → ( 𝜒 ∧ ( 𝜂𝑅 ∈ V ) ) ) )
50 simprr ( ( 𝜒 ∧ ( ( 𝜂𝑅 ∈ V ) ∧ 𝑖 = 𝑆 ) ) → 𝑖 = 𝑆 )
51 3 ad2antll ( ( 𝜒 ∧ ( ( 𝜂𝑅 ∈ V ) ∧ 𝑖 = 𝑆 ) ) → ( 𝜑𝜒 ) )
52 51 bicomd ( ( 𝜒 ∧ ( ( 𝜂𝑅 ∈ V ) ∧ 𝑖 = 𝑆 ) ) → ( 𝜒𝜑 ) )
53 anbi1 ( ( 𝜒𝜑 ) → ( ( 𝜒 ∧ ( ( 𝜂𝑅 ∈ V ) ∧ 𝑖 = 𝑆 ) ) ↔ ( 𝜑 ∧ ( ( 𝜂𝑅 ∈ V ) ∧ 𝑖 = 𝑆 ) ) ) )
54 simpl ( ( 𝜑 ∧ ( ( 𝜂𝑅 ∈ V ) ∧ 𝑖 = 𝑆 ) ) → 𝜑 )
55 53 54 syl6bi ( ( 𝜒𝜑 ) → ( ( 𝜒 ∧ ( ( 𝜂𝑅 ∈ V ) ∧ 𝑖 = 𝑆 ) ) → 𝜑 ) )
56 52 55 mpcom ( ( 𝜒 ∧ ( ( 𝜂𝑅 ∈ V ) ∧ 𝑖 = 𝑆 ) ) → 𝜑 )
57 simprl ( ( 𝜒 ∧ ( ( 𝜂𝑅 ∈ V ) ∧ 𝑖 = 𝑆 ) ) → ( 𝜂𝑅 ∈ V ) )
58 50 56 57 3jca ( ( 𝜒 ∧ ( ( 𝜂𝑅 ∈ V ) ∧ 𝑖 = 𝑆 ) ) → ( 𝑖 = 𝑆𝜑 ∧ ( 𝜂𝑅 ∈ V ) ) )
59 58 anassrs ( ( ( 𝜒 ∧ ( 𝜂𝑅 ∈ V ) ) ∧ 𝑖 = 𝑆 ) → ( 𝑖 = 𝑆𝜑 ∧ ( 𝜂𝑅 ∈ V ) ) )
60 59 expcom ( 𝑖 = 𝑆 → ( ( 𝜒 ∧ ( 𝜂𝑅 ∈ V ) ) → ( 𝑖 = 𝑆𝜑 ∧ ( 𝜂𝑅 ∈ V ) ) ) )
61 49 60 impbid ( 𝑖 = 𝑆 → ( ( 𝑖 = 𝑆𝜑 ∧ ( 𝜂𝑅 ∈ V ) ) ↔ ( 𝜒 ∧ ( 𝜂𝑅 ∈ V ) ) ) )
62 61 spcegv ( 𝑆𝑉 → ( ( 𝜒 ∧ ( 𝜂𝑅 ∈ V ) ) → ∃ 𝑖 ( 𝑖 = 𝑆𝜑 ∧ ( 𝜂𝑅 ∈ V ) ) ) )
63 42 62 mpcom ( ( 𝜒 ∧ ( 𝜂𝑅 ∈ V ) ) → ∃ 𝑖 ( 𝑖 = 𝑆𝜑 ∧ ( 𝜂𝑅 ∈ V ) ) )
64 40 41 63 syl2an2r ( ( ( 𝜂𝑅 ∈ V ) ∧ 0 ∈ ℕ0 ) → ∃ 𝑖 ( 𝑖 = 𝑆𝜑 ∧ ( 𝜂𝑅 ∈ V ) ) )
65 simpl ( ( 𝑆 ( I ↾ 𝑅 ) 𝑥 ∧ ( ∃ 𝑖 ( 𝑖 = 𝑆𝜑 ∧ ( 𝜂𝑅 ∈ V ) ) ∧ ( ( 𝜂𝑅 ∈ V ) ∧ 0 ∈ ℕ0 ) ) ) → 𝑆 ( I ↾ 𝑅 ) 𝑥 )
66 df-br ( 𝑆 ( I ↾ 𝑅 ) 𝑥 ↔ ⟨ 𝑆 , 𝑥 ⟩ ∈ ( I ↾ 𝑅 ) )
67 65 66 sylib ( ( 𝑆 ( I ↾ 𝑅 ) 𝑥 ∧ ( ∃ 𝑖 ( 𝑖 = 𝑆𝜑 ∧ ( 𝜂𝑅 ∈ V ) ) ∧ ( ( 𝜂𝑅 ∈ V ) ∧ 0 ∈ ℕ0 ) ) ) → ⟨ 𝑆 , 𝑥 ⟩ ∈ ( I ↾ 𝑅 ) )
68 vex 𝑥 ∈ V
69 68 opelresi ( ⟨ 𝑆 , 𝑥 ⟩ ∈ ( I ↾ 𝑅 ) ↔ ( 𝑆 𝑅 ∧ ⟨ 𝑆 , 𝑥 ⟩ ∈ I ) )
70 67 69 sylib ( ( 𝑆 ( I ↾ 𝑅 ) 𝑥 ∧ ( ∃ 𝑖 ( 𝑖 = 𝑆𝜑 ∧ ( 𝜂𝑅 ∈ V ) ) ∧ ( ( 𝜂𝑅 ∈ V ) ∧ 0 ∈ ℕ0 ) ) ) → ( 𝑆 𝑅 ∧ ⟨ 𝑆 , 𝑥 ⟩ ∈ I ) )
71 simplr ( ( ( 𝑆 𝑅 ∧ ⟨ 𝑆 , 𝑥 ⟩ ∈ I ) ∧ ( 𝑆 ( I ↾ 𝑅 ) 𝑥 ∧ ( ∃ 𝑖 ( 𝑖 = 𝑆𝜑 ∧ ( 𝜂𝑅 ∈ V ) ) ∧ ( ( 𝜂𝑅 ∈ V ) ∧ 0 ∈ ℕ0 ) ) ) ) → ⟨ 𝑆 , 𝑥 ⟩ ∈ I )
72 df-br ( 𝑆 I 𝑥 ↔ ⟨ 𝑆 , 𝑥 ⟩ ∈ I )
73 71 72 sylibr ( ( ( 𝑆 𝑅 ∧ ⟨ 𝑆 , 𝑥 ⟩ ∈ I ) ∧ ( 𝑆 ( I ↾ 𝑅 ) 𝑥 ∧ ( ∃ 𝑖 ( 𝑖 = 𝑆𝜑 ∧ ( 𝜂𝑅 ∈ V ) ) ∧ ( ( 𝜂𝑅 ∈ V ) ∧ 0 ∈ ℕ0 ) ) ) ) → 𝑆 I 𝑥 )
74 68 ideq ( 𝑆 I 𝑥𝑆 = 𝑥 )
75 73 74 sylib ( ( ( 𝑆 𝑅 ∧ ⟨ 𝑆 , 𝑥 ⟩ ∈ I ) ∧ ( 𝑆 ( I ↾ 𝑅 ) 𝑥 ∧ ( ∃ 𝑖 ( 𝑖 = 𝑆𝜑 ∧ ( 𝜂𝑅 ∈ V ) ) ∧ ( ( 𝜂𝑅 ∈ V ) ∧ 0 ∈ ℕ0 ) ) ) ) → 𝑆 = 𝑥 )
76 70 75 mpancom ( ( 𝑆 ( I ↾ 𝑅 ) 𝑥 ∧ ( ∃ 𝑖 ( 𝑖 = 𝑆𝜑 ∧ ( 𝜂𝑅 ∈ V ) ) ∧ ( ( 𝜂𝑅 ∈ V ) ∧ 0 ∈ ℕ0 ) ) ) → 𝑆 = 𝑥 )
77 breq1 ( 𝑆 = 𝑥 → ( 𝑆 ( I ↾ 𝑅 ) 𝑥𝑥 ( I ↾ 𝑅 ) 𝑥 ) )
78 eqeq2 ( 𝑆 = 𝑥 → ( 𝑖 = 𝑆𝑖 = 𝑥 ) )
79 78 3anbi1d ( 𝑆 = 𝑥 → ( ( 𝑖 = 𝑆𝜑 ∧ ( 𝜂𝑅 ∈ V ) ) ↔ ( 𝑖 = 𝑥𝜑 ∧ ( 𝜂𝑅 ∈ V ) ) ) )
80 79 exbidv ( 𝑆 = 𝑥 → ( ∃ 𝑖 ( 𝑖 = 𝑆𝜑 ∧ ( 𝜂𝑅 ∈ V ) ) ↔ ∃ 𝑖 ( 𝑖 = 𝑥𝜑 ∧ ( 𝜂𝑅 ∈ V ) ) ) )
81 80 anbi1d ( 𝑆 = 𝑥 → ( ( ∃ 𝑖 ( 𝑖 = 𝑆𝜑 ∧ ( 𝜂𝑅 ∈ V ) ) ∧ ( ( 𝜂𝑅 ∈ V ) ∧ 0 ∈ ℕ0 ) ) ↔ ( ∃ 𝑖 ( 𝑖 = 𝑥𝜑 ∧ ( 𝜂𝑅 ∈ V ) ) ∧ ( ( 𝜂𝑅 ∈ V ) ∧ 0 ∈ ℕ0 ) ) ) )
82 77 81 anbi12d ( 𝑆 = 𝑥 → ( ( 𝑆 ( I ↾ 𝑅 ) 𝑥 ∧ ( ∃ 𝑖 ( 𝑖 = 𝑆𝜑 ∧ ( 𝜂𝑅 ∈ V ) ) ∧ ( ( 𝜂𝑅 ∈ V ) ∧ 0 ∈ ℕ0 ) ) ) ↔ ( 𝑥 ( I ↾ 𝑅 ) 𝑥 ∧ ( ∃ 𝑖 ( 𝑖 = 𝑥𝜑 ∧ ( 𝜂𝑅 ∈ V ) ) ∧ ( ( 𝜂𝑅 ∈ V ) ∧ 0 ∈ ℕ0 ) ) ) ) )
83 simprl ( ( ( 𝜂𝑅 ∈ V ) ∧ ( 𝜑𝑖 = 𝑥 ) ) → 𝜑 )
84 4 ad2antll ( ( ( 𝜂𝑅 ∈ V ) ∧ ( 𝜑𝑖 = 𝑥 ) ) → ( 𝜑𝜓 ) )
85 83 84 mpbid ( ( ( 𝜂𝑅 ∈ V ) ∧ ( 𝜑𝑖 = 𝑥 ) ) → 𝜓 )
86 85 expcom ( ( 𝜑𝑖 = 𝑥 ) → ( ( 𝜂𝑅 ∈ V ) → 𝜓 ) )
87 86 expcom ( 𝑖 = 𝑥 → ( 𝜑 → ( ( 𝜂𝑅 ∈ V ) → 𝜓 ) ) )
88 87 3imp ( ( 𝑖 = 𝑥𝜑 ∧ ( 𝜂𝑅 ∈ V ) ) → 𝜓 )
89 88 exlimiv ( ∃ 𝑖 ( 𝑖 = 𝑥𝜑 ∧ ( 𝜂𝑅 ∈ V ) ) → 𝜓 )
90 89 ad2antrl ( ( 𝑥 ( I ↾ 𝑅 ) 𝑥 ∧ ( ∃ 𝑖 ( 𝑖 = 𝑥𝜑 ∧ ( 𝜂𝑅 ∈ V ) ) ∧ ( ( 𝜂𝑅 ∈ V ) ∧ 0 ∈ ℕ0 ) ) ) → 𝜓 )
91 82 90 syl6bi ( 𝑆 = 𝑥 → ( ( 𝑆 ( I ↾ 𝑅 ) 𝑥 ∧ ( ∃ 𝑖 ( 𝑖 = 𝑆𝜑 ∧ ( 𝜂𝑅 ∈ V ) ) ∧ ( ( 𝜂𝑅 ∈ V ) ∧ 0 ∈ ℕ0 ) ) ) → 𝜓 ) )
92 76 91 mpcom ( ( 𝑆 ( I ↾ 𝑅 ) 𝑥 ∧ ( ∃ 𝑖 ( 𝑖 = 𝑆𝜑 ∧ ( 𝜂𝑅 ∈ V ) ) ∧ ( ( 𝜂𝑅 ∈ V ) ∧ 0 ∈ ℕ0 ) ) ) → 𝜓 )
93 92 expcom ( ( ∃ 𝑖 ( 𝑖 = 𝑆𝜑 ∧ ( 𝜂𝑅 ∈ V ) ) ∧ ( ( 𝜂𝑅 ∈ V ) ∧ 0 ∈ ℕ0 ) ) → ( 𝑆 ( I ↾ 𝑅 ) 𝑥𝜓 ) )
94 64 93 mpancom ( ( ( 𝜂𝑅 ∈ V ) ∧ 0 ∈ ℕ0 ) → ( 𝑆 ( I ↾ 𝑅 ) 𝑥𝜓 ) )
95 breq ( ( 𝑅𝑟 0 ) = ( I ↾ 𝑅 ) → ( 𝑆 ( 𝑅𝑟 0 ) 𝑥𝑆 ( I ↾ 𝑅 ) 𝑥 ) )
96 95 imbi1d ( ( 𝑅𝑟 0 ) = ( I ↾ 𝑅 ) → ( ( 𝑆 ( 𝑅𝑟 0 ) 𝑥𝜓 ) ↔ ( 𝑆 ( I ↾ 𝑅 ) 𝑥𝜓 ) ) )
97 94 96 syl5ibr ( ( 𝑅𝑟 0 ) = ( I ↾ 𝑅 ) → ( ( ( 𝜂𝑅 ∈ V ) ∧ 0 ∈ ℕ0 ) → ( 𝑆 ( 𝑅𝑟 0 ) 𝑥𝜓 ) ) )
98 39 97 mpcom ( ( ( 𝜂𝑅 ∈ V ) ∧ 0 ∈ ℕ0 ) → ( 𝑆 ( 𝑅𝑟 0 ) 𝑥𝜓 ) )
99 98 alrimiv ( ( ( 𝜂𝑅 ∈ V ) ∧ 0 ∈ ℕ0 ) → ∀ 𝑥 ( 𝑆 ( 𝑅𝑟 0 ) 𝑥𝜓 ) )
100 breq2 ( 𝑖 = 𝑥 → ( 𝑆 ( 𝑅𝑟 𝑙 ) 𝑖𝑆 ( 𝑅𝑟 𝑙 ) 𝑥 ) )
101 100 4 imbi12d ( 𝑖 = 𝑥 → ( ( 𝑆 ( 𝑅𝑟 𝑙 ) 𝑖𝜑 ) ↔ ( 𝑆 ( 𝑅𝑟 𝑙 ) 𝑥𝜓 ) ) )
102 101 cbvalvw ( ∀ 𝑖 ( 𝑆 ( 𝑅𝑟 𝑙 ) 𝑖𝜑 ) ↔ ∀ 𝑥 ( 𝑆 ( 𝑅𝑟 𝑙 ) 𝑥𝜓 ) )
103 102 bicomi ( ∀ 𝑥 ( 𝑆 ( 𝑅𝑟 𝑙 ) 𝑥𝜓 ) ↔ ∀ 𝑖 ( 𝑆 ( 𝑅𝑟 𝑙 ) 𝑖𝜑 ) )
104 imbi2 ( ( ∀ 𝑥 ( 𝑆 ( 𝑅𝑟 𝑙 ) 𝑥𝜓 ) ↔ ∀ 𝑖 ( 𝑆 ( 𝑅𝑟 𝑙 ) 𝑖𝜑 ) ) → ( ( ( ( 𝜂𝑅 ∈ V ) ∧ 𝑙 ∈ ℕ0 ) → ∀ 𝑥 ( 𝑆 ( 𝑅𝑟 𝑙 ) 𝑥𝜓 ) ) ↔ ( ( ( 𝜂𝑅 ∈ V ) ∧ 𝑙 ∈ ℕ0 ) → ∀ 𝑖 ( 𝑆 ( 𝑅𝑟 𝑙 ) 𝑖𝜑 ) ) ) )
105 104 anbi1d ( ( ∀ 𝑥 ( 𝑆 ( 𝑅𝑟 𝑙 ) 𝑥𝜓 ) ↔ ∀ 𝑖 ( 𝑆 ( 𝑅𝑟 𝑙 ) 𝑖𝜑 ) ) → ( ( ( ( ( 𝜂𝑅 ∈ V ) ∧ 𝑙 ∈ ℕ0 ) → ∀ 𝑥 ( 𝑆 ( 𝑅𝑟 𝑙 ) 𝑥𝜓 ) ) ∧ 𝑙 ∈ ℕ0 ) ↔ ( ( ( ( 𝜂𝑅 ∈ V ) ∧ 𝑙 ∈ ℕ0 ) → ∀ 𝑖 ( 𝑆 ( 𝑅𝑟 𝑙 ) 𝑖𝜑 ) ) ∧ 𝑙 ∈ ℕ0 ) ) )
106 105 anbi2d ( ( ∀ 𝑥 ( 𝑆 ( 𝑅𝑟 𝑙 ) 𝑥𝜓 ) ↔ ∀ 𝑖 ( 𝑆 ( 𝑅𝑟 𝑙 ) 𝑖𝜑 ) ) → ( ( ( 𝑙 + 1 ) ∈ ℕ0 ∧ ( ( ( ( 𝜂𝑅 ∈ V ) ∧ 𝑙 ∈ ℕ0 ) → ∀ 𝑥 ( 𝑆 ( 𝑅𝑟 𝑙 ) 𝑥𝜓 ) ) ∧ 𝑙 ∈ ℕ0 ) ) ↔ ( ( 𝑙 + 1 ) ∈ ℕ0 ∧ ( ( ( ( 𝜂𝑅 ∈ V ) ∧ 𝑙 ∈ ℕ0 ) → ∀ 𝑖 ( 𝑆 ( 𝑅𝑟 𝑙 ) 𝑖𝜑 ) ) ∧ 𝑙 ∈ ℕ0 ) ) ) )
107 106 anbi2d ( ( ∀ 𝑥 ( 𝑆 ( 𝑅𝑟 𝑙 ) 𝑥𝜓 ) ↔ ∀ 𝑖 ( 𝑆 ( 𝑅𝑟 𝑙 ) 𝑖𝜑 ) ) → ( ( ( 𝜂𝑅 ∈ V ) ∧ ( ( 𝑙 + 1 ) ∈ ℕ0 ∧ ( ( ( ( 𝜂𝑅 ∈ V ) ∧ 𝑙 ∈ ℕ0 ) → ∀ 𝑥 ( 𝑆 ( 𝑅𝑟 𝑙 ) 𝑥𝜓 ) ) ∧ 𝑙 ∈ ℕ0 ) ) ) ↔ ( ( 𝜂𝑅 ∈ V ) ∧ ( ( 𝑙 + 1 ) ∈ ℕ0 ∧ ( ( ( ( 𝜂𝑅 ∈ V ) ∧ 𝑙 ∈ ℕ0 ) → ∀ 𝑖 ( 𝑆 ( 𝑅𝑟 𝑙 ) 𝑖𝜑 ) ) ∧ 𝑙 ∈ ℕ0 ) ) ) ) )
108 1 adantr ( ( 𝜂𝑅 ∈ V ) → Rel 𝑅 )
109 108 adantr ( ( ( 𝜂𝑅 ∈ V ) ∧ ( ( 𝑙 + 1 ) ∈ ℕ0 ∧ ( ( ( ( 𝜂𝑅 ∈ V ) ∧ 𝑙 ∈ ℕ0 ) → ∀ 𝑖 ( 𝑆 ( 𝑅𝑟 𝑙 ) 𝑖𝜑 ) ) ∧ 𝑙 ∈ ℕ0 ) ) ) → Rel 𝑅 )
110 simprrr ( ( ( 𝜂𝑅 ∈ V ) ∧ ( ( 𝑙 + 1 ) ∈ ℕ0 ∧ ( ( ( ( 𝜂𝑅 ∈ V ) ∧ 𝑙 ∈ ℕ0 ) → ∀ 𝑖 ( 𝑆 ( 𝑅𝑟 𝑙 ) 𝑖𝜑 ) ) ∧ 𝑙 ∈ ℕ0 ) ) ) → 𝑙 ∈ ℕ0 )
111 109 110 relexpsucld ( ( ( 𝜂𝑅 ∈ V ) ∧ ( ( 𝑙 + 1 ) ∈ ℕ0 ∧ ( ( ( ( 𝜂𝑅 ∈ V ) ∧ 𝑙 ∈ ℕ0 ) → ∀ 𝑖 ( 𝑆 ( 𝑅𝑟 𝑙 ) 𝑖𝜑 ) ) ∧ 𝑙 ∈ ℕ0 ) ) ) → ( 𝑅𝑟 ( 𝑙 + 1 ) ) = ( 𝑅 ∘ ( 𝑅𝑟 𝑙 ) ) )
112 simpl ( ( 𝑆 ( 𝑅 ∘ ( 𝑅𝑟 𝑙 ) ) 𝑥 ∧ ( ( 𝜂𝑅 ∈ V ) ∧ ( ( 𝑙 + 1 ) ∈ ℕ0 ∧ ( ( ( ( 𝜂𝑅 ∈ V ) ∧ 𝑙 ∈ ℕ0 ) → ∀ 𝑖 ( 𝑆 ( 𝑅𝑟 𝑙 ) 𝑖𝜑 ) ) ∧ 𝑙 ∈ ℕ0 ) ) ) ) → 𝑆 ( 𝑅 ∘ ( 𝑅𝑟 𝑙 ) ) 𝑥 )
113 2 adantr ( ( 𝜂𝑅 ∈ V ) → 𝑆𝑉 )
114 113 ad2antrl ( ( 𝑆 ( 𝑅 ∘ ( 𝑅𝑟 𝑙 ) ) 𝑥 ∧ ( ( 𝜂𝑅 ∈ V ) ∧ ( ( 𝑙 + 1 ) ∈ ℕ0 ∧ ( ( ( ( 𝜂𝑅 ∈ V ) ∧ 𝑙 ∈ ℕ0 ) → ∀ 𝑖 ( 𝑆 ( 𝑅𝑟 𝑙 ) 𝑖𝜑 ) ) ∧ 𝑙 ∈ ℕ0 ) ) ) ) → 𝑆𝑉 )
115 brcog ( ( 𝑆𝑉𝑥 ∈ V ) → ( 𝑆 ( 𝑅 ∘ ( 𝑅𝑟 𝑙 ) ) 𝑥 ↔ ∃ 𝑗 ( 𝑆 ( 𝑅𝑟 𝑙 ) 𝑗𝑗 𝑅 𝑥 ) ) )
116 114 68 115 sylancl ( ( 𝑆 ( 𝑅 ∘ ( 𝑅𝑟 𝑙 ) ) 𝑥 ∧ ( ( 𝜂𝑅 ∈ V ) ∧ ( ( 𝑙 + 1 ) ∈ ℕ0 ∧ ( ( ( ( 𝜂𝑅 ∈ V ) ∧ 𝑙 ∈ ℕ0 ) → ∀ 𝑖 ( 𝑆 ( 𝑅𝑟 𝑙 ) 𝑖𝜑 ) ) ∧ 𝑙 ∈ ℕ0 ) ) ) ) → ( 𝑆 ( 𝑅 ∘ ( 𝑅𝑟 𝑙 ) ) 𝑥 ↔ ∃ 𝑗 ( 𝑆 ( 𝑅𝑟 𝑙 ) 𝑗𝑗 𝑅 𝑥 ) ) )
117 112 116 mpbid ( ( 𝑆 ( 𝑅 ∘ ( 𝑅𝑟 𝑙 ) ) 𝑥 ∧ ( ( 𝜂𝑅 ∈ V ) ∧ ( ( 𝑙 + 1 ) ∈ ℕ0 ∧ ( ( ( ( 𝜂𝑅 ∈ V ) ∧ 𝑙 ∈ ℕ0 ) → ∀ 𝑖 ( 𝑆 ( 𝑅𝑟 𝑙 ) 𝑖𝜑 ) ) ∧ 𝑙 ∈ ℕ0 ) ) ) ) → ∃ 𝑗 ( 𝑆 ( 𝑅𝑟 𝑙 ) 𝑗𝑗 𝑅 𝑥 ) )
118 simprl ( ( 𝑆 ( 𝑅 ∘ ( 𝑅𝑟 𝑙 ) ) 𝑥 ∧ ( ( 𝜂𝑅 ∈ V ) ∧ ( ( 𝑙 + 1 ) ∈ ℕ0 ∧ ( ( ( ( 𝜂𝑅 ∈ V ) ∧ 𝑙 ∈ ℕ0 ) → ∀ 𝑖 ( 𝑆 ( 𝑅𝑟 𝑙 ) 𝑖𝜑 ) ) ∧ ( 𝑙 ∈ ℕ0 ∧ ( 𝑆 ( 𝑅𝑟 𝑙 ) 𝑗𝑗 𝑅 𝑥 ) ) ) ) ) ) → ( 𝜂𝑅 ∈ V ) )
119 simprrl ( ( ( 𝑙 + 1 ) ∈ ℕ0 ∧ ( ( ( ( 𝜂𝑅 ∈ V ) ∧ 𝑙 ∈ ℕ0 ) → ∀ 𝑖 ( 𝑆 ( 𝑅𝑟 𝑙 ) 𝑖𝜑 ) ) ∧ ( 𝑙 ∈ ℕ0 ∧ ( 𝑆 ( 𝑅𝑟 𝑙 ) 𝑗𝑗 𝑅 𝑥 ) ) ) ) → 𝑙 ∈ ℕ0 )
120 119 ad2antll ( ( 𝑆 ( 𝑅 ∘ ( 𝑅𝑟 𝑙 ) ) 𝑥 ∧ ( ( 𝜂𝑅 ∈ V ) ∧ ( ( 𝑙 + 1 ) ∈ ℕ0 ∧ ( ( ( ( 𝜂𝑅 ∈ V ) ∧ 𝑙 ∈ ℕ0 ) → ∀ 𝑖 ( 𝑆 ( 𝑅𝑟 𝑙 ) 𝑖𝜑 ) ) ∧ ( 𝑙 ∈ ℕ0 ∧ ( 𝑆 ( 𝑅𝑟 𝑙 ) 𝑗𝑗 𝑅 𝑥 ) ) ) ) ) ) → 𝑙 ∈ ℕ0 )
121 simprl ( ( ( 𝑙 + 1 ) ∈ ℕ0 ∧ ( ( ( ( 𝜂𝑅 ∈ V ) ∧ 𝑙 ∈ ℕ0 ) → ∀ 𝑖 ( 𝑆 ( 𝑅𝑟 𝑙 ) 𝑖𝜑 ) ) ∧ ( 𝑙 ∈ ℕ0 ∧ ( 𝑆 ( 𝑅𝑟 𝑙 ) 𝑗𝑗 𝑅 𝑥 ) ) ) ) → ( ( ( 𝜂𝑅 ∈ V ) ∧ 𝑙 ∈ ℕ0 ) → ∀ 𝑖 ( 𝑆 ( 𝑅𝑟 𝑙 ) 𝑖𝜑 ) ) )
122 121 ad2antll ( ( 𝑆 ( 𝑅 ∘ ( 𝑅𝑟 𝑙 ) ) 𝑥 ∧ ( ( 𝜂𝑅 ∈ V ) ∧ ( ( 𝑙 + 1 ) ∈ ℕ0 ∧ ( ( ( ( 𝜂𝑅 ∈ V ) ∧ 𝑙 ∈ ℕ0 ) → ∀ 𝑖 ( 𝑆 ( 𝑅𝑟 𝑙 ) 𝑖𝜑 ) ) ∧ ( 𝑙 ∈ ℕ0 ∧ ( 𝑆 ( 𝑅𝑟 𝑙 ) 𝑗𝑗 𝑅 𝑥 ) ) ) ) ) ) → ( ( ( 𝜂𝑅 ∈ V ) ∧ 𝑙 ∈ ℕ0 ) → ∀ 𝑖 ( 𝑆 ( 𝑅𝑟 𝑙 ) 𝑖𝜑 ) ) )
123 118 120 122 mp2and ( ( 𝑆 ( 𝑅 ∘ ( 𝑅𝑟 𝑙 ) ) 𝑥 ∧ ( ( 𝜂𝑅 ∈ V ) ∧ ( ( 𝑙 + 1 ) ∈ ℕ0 ∧ ( ( ( ( 𝜂𝑅 ∈ V ) ∧ 𝑙 ∈ ℕ0 ) → ∀ 𝑖 ( 𝑆 ( 𝑅𝑟 𝑙 ) 𝑖𝜑 ) ) ∧ ( 𝑙 ∈ ℕ0 ∧ ( 𝑆 ( 𝑅𝑟 𝑙 ) 𝑗𝑗 𝑅 𝑥 ) ) ) ) ) ) → ∀ 𝑖 ( 𝑆 ( 𝑅𝑟 𝑙 ) 𝑖𝜑 ) )
124 simprrl ( ( ∀ 𝑖 ( 𝑆 ( 𝑅𝑟 𝑙 ) 𝑖𝜑 ) ∧ ( 𝑆 ( 𝑅 ∘ ( 𝑅𝑟 𝑙 ) ) 𝑥 ∧ ( ( 𝜂𝑅 ∈ V ) ∧ ( ( 𝑙 + 1 ) ∈ ℕ0 ∧ ( ( ( ( 𝜂𝑅 ∈ V ) ∧ 𝑙 ∈ ℕ0 ) → ∀ 𝑖 ( 𝑆 ( 𝑅𝑟 𝑙 ) 𝑖𝜑 ) ) ∧ ( 𝑙 ∈ ℕ0 ∧ ( 𝑆 ( 𝑅𝑟 𝑙 ) 𝑗𝑗 𝑅 𝑥 ) ) ) ) ) ) ) → ( 𝜂𝑅 ∈ V ) )
125 simprrr ( ( ( ( ( 𝜂𝑅 ∈ V ) ∧ 𝑙 ∈ ℕ0 ) → ∀ 𝑖 ( 𝑆 ( 𝑅𝑟 𝑙 ) 𝑖𝜑 ) ) ∧ ( 𝑙 ∈ ℕ0 ∧ ( 𝑆 ( 𝑅𝑟 𝑙 ) 𝑗𝑗 𝑅 𝑥 ) ) ) → 𝑗 𝑅 𝑥 )
126 125 ad2antll ( ( ( 𝜂𝑅 ∈ V ) ∧ ( ( 𝑙 + 1 ) ∈ ℕ0 ∧ ( ( ( ( 𝜂𝑅 ∈ V ) ∧ 𝑙 ∈ ℕ0 ) → ∀ 𝑖 ( 𝑆 ( 𝑅𝑟 𝑙 ) 𝑖𝜑 ) ) ∧ ( 𝑙 ∈ ℕ0 ∧ ( 𝑆 ( 𝑅𝑟 𝑙 ) 𝑗𝑗 𝑅 𝑥 ) ) ) ) ) → 𝑗 𝑅 𝑥 )
127 126 ad2antll ( ( ∀ 𝑖 ( 𝑆 ( 𝑅𝑟 𝑙 ) 𝑖𝜑 ) ∧ ( 𝑆 ( 𝑅 ∘ ( 𝑅𝑟 𝑙 ) ) 𝑥 ∧ ( ( 𝜂𝑅 ∈ V ) ∧ ( ( 𝑙 + 1 ) ∈ ℕ0 ∧ ( ( ( ( 𝜂𝑅 ∈ V ) ∧ 𝑙 ∈ ℕ0 ) → ∀ 𝑖 ( 𝑆 ( 𝑅𝑟 𝑙 ) 𝑖𝜑 ) ) ∧ ( 𝑙 ∈ ℕ0 ∧ ( 𝑆 ( 𝑅𝑟 𝑙 ) 𝑗𝑗 𝑅 𝑥 ) ) ) ) ) ) ) → 𝑗 𝑅 𝑥 )
128 breq2 ( 𝑖 = 𝑗 → ( 𝑆 ( 𝑅𝑟 𝑙 ) 𝑖𝑆 ( 𝑅𝑟 𝑙 ) 𝑗 ) )
129 128 5 imbi12d ( 𝑖 = 𝑗 → ( ( 𝑆 ( 𝑅𝑟 𝑙 ) 𝑖𝜑 ) ↔ ( 𝑆 ( 𝑅𝑟 𝑙 ) 𝑗𝜃 ) ) )
130 129 cbvalvw ( ∀ 𝑖 ( 𝑆 ( 𝑅𝑟 𝑙 ) 𝑖𝜑 ) ↔ ∀ 𝑗 ( 𝑆 ( 𝑅𝑟 𝑙 ) 𝑗𝜃 ) )
131 id ( ( ∀ 𝑖 ( 𝑆 ( 𝑅𝑟 𝑙 ) 𝑖𝜑 ) ↔ ∀ 𝑗 ( 𝑆 ( 𝑅𝑟 𝑙 ) 𝑗𝜃 ) ) → ( ∀ 𝑖 ( 𝑆 ( 𝑅𝑟 𝑙 ) 𝑖𝜑 ) ↔ ∀ 𝑗 ( 𝑆 ( 𝑅𝑟 𝑙 ) 𝑗𝜃 ) ) )
132 imbi2 ( ( ∀ 𝑖 ( 𝑆 ( 𝑅𝑟 𝑙 ) 𝑖𝜑 ) ↔ ∀ 𝑗 ( 𝑆 ( 𝑅𝑟 𝑙 ) 𝑗𝜃 ) ) → ( ( ( ( 𝜂𝑅 ∈ V ) ∧ 𝑙 ∈ ℕ0 ) → ∀ 𝑖 ( 𝑆 ( 𝑅𝑟 𝑙 ) 𝑖𝜑 ) ) ↔ ( ( ( 𝜂𝑅 ∈ V ) ∧ 𝑙 ∈ ℕ0 ) → ∀ 𝑗 ( 𝑆 ( 𝑅𝑟 𝑙 ) 𝑗𝜃 ) ) ) )
133 132 anbi1d ( ( ∀ 𝑖 ( 𝑆 ( 𝑅𝑟 𝑙 ) 𝑖𝜑 ) ↔ ∀ 𝑗 ( 𝑆 ( 𝑅𝑟 𝑙 ) 𝑗𝜃 ) ) → ( ( ( ( ( 𝜂𝑅 ∈ V ) ∧ 𝑙 ∈ ℕ0 ) → ∀ 𝑖 ( 𝑆 ( 𝑅𝑟 𝑙 ) 𝑖𝜑 ) ) ∧ ( 𝑙 ∈ ℕ0 ∧ ( 𝑆 ( 𝑅𝑟 𝑙 ) 𝑗𝑗 𝑅 𝑥 ) ) ) ↔ ( ( ( ( 𝜂𝑅 ∈ V ) ∧ 𝑙 ∈ ℕ0 ) → ∀ 𝑗 ( 𝑆 ( 𝑅𝑟 𝑙 ) 𝑗𝜃 ) ) ∧ ( 𝑙 ∈ ℕ0 ∧ ( 𝑆 ( 𝑅𝑟 𝑙 ) 𝑗𝑗 𝑅 𝑥 ) ) ) ) )
134 133 anbi2d ( ( ∀ 𝑖 ( 𝑆 ( 𝑅𝑟 𝑙 ) 𝑖𝜑 ) ↔ ∀ 𝑗 ( 𝑆 ( 𝑅𝑟 𝑙 ) 𝑗𝜃 ) ) → ( ( ( 𝑙 + 1 ) ∈ ℕ0 ∧ ( ( ( ( 𝜂𝑅 ∈ V ) ∧ 𝑙 ∈ ℕ0 ) → ∀ 𝑖 ( 𝑆 ( 𝑅𝑟 𝑙 ) 𝑖𝜑 ) ) ∧ ( 𝑙 ∈ ℕ0 ∧ ( 𝑆 ( 𝑅𝑟 𝑙 ) 𝑗𝑗 𝑅 𝑥 ) ) ) ) ↔ ( ( 𝑙 + 1 ) ∈ ℕ0 ∧ ( ( ( ( 𝜂𝑅 ∈ V ) ∧ 𝑙 ∈ ℕ0 ) → ∀ 𝑗 ( 𝑆 ( 𝑅𝑟 𝑙 ) 𝑗𝜃 ) ) ∧ ( 𝑙 ∈ ℕ0 ∧ ( 𝑆 ( 𝑅𝑟 𝑙 ) 𝑗𝑗 𝑅 𝑥 ) ) ) ) ) )
135 134 anbi2d ( ( ∀ 𝑖 ( 𝑆 ( 𝑅𝑟 𝑙 ) 𝑖𝜑 ) ↔ ∀ 𝑗 ( 𝑆 ( 𝑅𝑟 𝑙 ) 𝑗𝜃 ) ) → ( ( ( 𝜂𝑅 ∈ V ) ∧ ( ( 𝑙 + 1 ) ∈ ℕ0 ∧ ( ( ( ( 𝜂𝑅 ∈ V ) ∧ 𝑙 ∈ ℕ0 ) → ∀ 𝑖 ( 𝑆 ( 𝑅𝑟 𝑙 ) 𝑖𝜑 ) ) ∧ ( 𝑙 ∈ ℕ0 ∧ ( 𝑆 ( 𝑅𝑟 𝑙 ) 𝑗𝑗 𝑅 𝑥 ) ) ) ) ) ↔ ( ( 𝜂𝑅 ∈ V ) ∧ ( ( 𝑙 + 1 ) ∈ ℕ0 ∧ ( ( ( ( 𝜂𝑅 ∈ V ) ∧ 𝑙 ∈ ℕ0 ) → ∀ 𝑗 ( 𝑆 ( 𝑅𝑟 𝑙 ) 𝑗𝜃 ) ) ∧ ( 𝑙 ∈ ℕ0 ∧ ( 𝑆 ( 𝑅𝑟 𝑙 ) 𝑗𝑗 𝑅 𝑥 ) ) ) ) ) ) )
136 135 anbi2d ( ( ∀ 𝑖 ( 𝑆 ( 𝑅𝑟 𝑙 ) 𝑖𝜑 ) ↔ ∀ 𝑗 ( 𝑆 ( 𝑅𝑟 𝑙 ) 𝑗𝜃 ) ) → ( ( 𝑆 ( 𝑅 ∘ ( 𝑅𝑟 𝑙 ) ) 𝑥 ∧ ( ( 𝜂𝑅 ∈ V ) ∧ ( ( 𝑙 + 1 ) ∈ ℕ0 ∧ ( ( ( ( 𝜂𝑅 ∈ V ) ∧ 𝑙 ∈ ℕ0 ) → ∀ 𝑖 ( 𝑆 ( 𝑅𝑟 𝑙 ) 𝑖𝜑 ) ) ∧ ( 𝑙 ∈ ℕ0 ∧ ( 𝑆 ( 𝑅𝑟 𝑙 ) 𝑗𝑗 𝑅 𝑥 ) ) ) ) ) ) ↔ ( 𝑆 ( 𝑅 ∘ ( 𝑅𝑟 𝑙 ) ) 𝑥 ∧ ( ( 𝜂𝑅 ∈ V ) ∧ ( ( 𝑙 + 1 ) ∈ ℕ0 ∧ ( ( ( ( 𝜂𝑅 ∈ V ) ∧ 𝑙 ∈ ℕ0 ) → ∀ 𝑗 ( 𝑆 ( 𝑅𝑟 𝑙 ) 𝑗𝜃 ) ) ∧ ( 𝑙 ∈ ℕ0 ∧ ( 𝑆 ( 𝑅𝑟 𝑙 ) 𝑗𝑗 𝑅 𝑥 ) ) ) ) ) ) ) )
137 131 136 anbi12d ( ( ∀ 𝑖 ( 𝑆 ( 𝑅𝑟 𝑙 ) 𝑖𝜑 ) ↔ ∀ 𝑗 ( 𝑆 ( 𝑅𝑟 𝑙 ) 𝑗𝜃 ) ) → ( ( ∀ 𝑖 ( 𝑆 ( 𝑅𝑟 𝑙 ) 𝑖𝜑 ) ∧ ( 𝑆 ( 𝑅 ∘ ( 𝑅𝑟 𝑙 ) ) 𝑥 ∧ ( ( 𝜂𝑅 ∈ V ) ∧ ( ( 𝑙 + 1 ) ∈ ℕ0 ∧ ( ( ( ( 𝜂𝑅 ∈ V ) ∧ 𝑙 ∈ ℕ0 ) → ∀ 𝑖 ( 𝑆 ( 𝑅𝑟 𝑙 ) 𝑖𝜑 ) ) ∧ ( 𝑙 ∈ ℕ0 ∧ ( 𝑆 ( 𝑅𝑟 𝑙 ) 𝑗𝑗 𝑅 𝑥 ) ) ) ) ) ) ) ↔ ( ∀ 𝑗 ( 𝑆 ( 𝑅𝑟 𝑙 ) 𝑗𝜃 ) ∧ ( 𝑆 ( 𝑅 ∘ ( 𝑅𝑟 𝑙 ) ) 𝑥 ∧ ( ( 𝜂𝑅 ∈ V ) ∧ ( ( 𝑙 + 1 ) ∈ ℕ0 ∧ ( ( ( ( 𝜂𝑅 ∈ V ) ∧ 𝑙 ∈ ℕ0 ) → ∀ 𝑗 ( 𝑆 ( 𝑅𝑟 𝑙 ) 𝑗𝜃 ) ) ∧ ( 𝑙 ∈ ℕ0 ∧ ( 𝑆 ( 𝑅𝑟 𝑙 ) 𝑗𝑗 𝑅 𝑥 ) ) ) ) ) ) ) ) )
138 simprrl ( ( ( ( ( 𝜂𝑅 ∈ V ) ∧ 𝑙 ∈ ℕ0 ) → ∀ 𝑗 ( 𝑆 ( 𝑅𝑟 𝑙 ) 𝑗𝜃 ) ) ∧ ( 𝑙 ∈ ℕ0 ∧ ( 𝑆 ( 𝑅𝑟 𝑙 ) 𝑗𝑗 𝑅 𝑥 ) ) ) → 𝑆 ( 𝑅𝑟 𝑙 ) 𝑗 )
139 138 ad2antll ( ( ( 𝜂𝑅 ∈ V ) ∧ ( ( 𝑙 + 1 ) ∈ ℕ0 ∧ ( ( ( ( 𝜂𝑅 ∈ V ) ∧ 𝑙 ∈ ℕ0 ) → ∀ 𝑗 ( 𝑆 ( 𝑅𝑟 𝑙 ) 𝑗𝜃 ) ) ∧ ( 𝑙 ∈ ℕ0 ∧ ( 𝑆 ( 𝑅𝑟 𝑙 ) 𝑗𝑗 𝑅 𝑥 ) ) ) ) ) → 𝑆 ( 𝑅𝑟 𝑙 ) 𝑗 )
140 139 ad2antll ( ( ∀ 𝑗 ( 𝑆 ( 𝑅𝑟 𝑙 ) 𝑗𝜃 ) ∧ ( 𝑆 ( 𝑅 ∘ ( 𝑅𝑟 𝑙 ) ) 𝑥 ∧ ( ( 𝜂𝑅 ∈ V ) ∧ ( ( 𝑙 + 1 ) ∈ ℕ0 ∧ ( ( ( ( 𝜂𝑅 ∈ V ) ∧ 𝑙 ∈ ℕ0 ) → ∀ 𝑗 ( 𝑆 ( 𝑅𝑟 𝑙 ) 𝑗𝜃 ) ) ∧ ( 𝑙 ∈ ℕ0 ∧ ( 𝑆 ( 𝑅𝑟 𝑙 ) 𝑗𝑗 𝑅 𝑥 ) ) ) ) ) ) ) → 𝑆 ( 𝑅𝑟 𝑙 ) 𝑗 )
141 sp ( ∀ 𝑗 ( 𝑆 ( 𝑅𝑟 𝑙 ) 𝑗𝜃 ) → ( 𝑆 ( 𝑅𝑟 𝑙 ) 𝑗𝜃 ) )
142 141 adantr ( ( ∀ 𝑗 ( 𝑆 ( 𝑅𝑟 𝑙 ) 𝑗𝜃 ) ∧ ( 𝑆 ( 𝑅 ∘ ( 𝑅𝑟 𝑙 ) ) 𝑥 ∧ ( ( 𝜂𝑅 ∈ V ) ∧ ( ( 𝑙 + 1 ) ∈ ℕ0 ∧ ( ( ( ( 𝜂𝑅 ∈ V ) ∧ 𝑙 ∈ ℕ0 ) → ∀ 𝑗 ( 𝑆 ( 𝑅𝑟 𝑙 ) 𝑗𝜃 ) ) ∧ ( 𝑙 ∈ ℕ0 ∧ ( 𝑆 ( 𝑅𝑟 𝑙 ) 𝑗𝑗 𝑅 𝑥 ) ) ) ) ) ) ) → ( 𝑆 ( 𝑅𝑟 𝑙 ) 𝑗𝜃 ) )
143 140 142 mpd ( ( ∀ 𝑗 ( 𝑆 ( 𝑅𝑟 𝑙 ) 𝑗𝜃 ) ∧ ( 𝑆 ( 𝑅 ∘ ( 𝑅𝑟 𝑙 ) ) 𝑥 ∧ ( ( 𝜂𝑅 ∈ V ) ∧ ( ( 𝑙 + 1 ) ∈ ℕ0 ∧ ( ( ( ( 𝜂𝑅 ∈ V ) ∧ 𝑙 ∈ ℕ0 ) → ∀ 𝑗 ( 𝑆 ( 𝑅𝑟 𝑙 ) 𝑗𝜃 ) ) ∧ ( 𝑙 ∈ ℕ0 ∧ ( 𝑆 ( 𝑅𝑟 𝑙 ) 𝑗𝑗 𝑅 𝑥 ) ) ) ) ) ) ) → 𝜃 )
144 137 143 syl6bi ( ( ∀ 𝑖 ( 𝑆 ( 𝑅𝑟 𝑙 ) 𝑖𝜑 ) ↔ ∀ 𝑗 ( 𝑆 ( 𝑅𝑟 𝑙 ) 𝑗𝜃 ) ) → ( ( ∀ 𝑖 ( 𝑆 ( 𝑅𝑟 𝑙 ) 𝑖𝜑 ) ∧ ( 𝑆 ( 𝑅 ∘ ( 𝑅𝑟 𝑙 ) ) 𝑥 ∧ ( ( 𝜂𝑅 ∈ V ) ∧ ( ( 𝑙 + 1 ) ∈ ℕ0 ∧ ( ( ( ( 𝜂𝑅 ∈ V ) ∧ 𝑙 ∈ ℕ0 ) → ∀ 𝑖 ( 𝑆 ( 𝑅𝑟 𝑙 ) 𝑖𝜑 ) ) ∧ ( 𝑙 ∈ ℕ0 ∧ ( 𝑆 ( 𝑅𝑟 𝑙 ) 𝑗𝑗 𝑅 𝑥 ) ) ) ) ) ) ) → 𝜃 ) )
145 130 144 ax-mp ( ( ∀ 𝑖 ( 𝑆 ( 𝑅𝑟 𝑙 ) 𝑖𝜑 ) ∧ ( 𝑆 ( 𝑅 ∘ ( 𝑅𝑟 𝑙 ) ) 𝑥 ∧ ( ( 𝜂𝑅 ∈ V ) ∧ ( ( 𝑙 + 1 ) ∈ ℕ0 ∧ ( ( ( ( 𝜂𝑅 ∈ V ) ∧ 𝑙 ∈ ℕ0 ) → ∀ 𝑖 ( 𝑆 ( 𝑅𝑟 𝑙 ) 𝑖𝜑 ) ) ∧ ( 𝑙 ∈ ℕ0 ∧ ( 𝑆 ( 𝑅𝑟 𝑙 ) 𝑗𝑗 𝑅 𝑥 ) ) ) ) ) ) ) → 𝜃 )
146 7 adantr ( ( 𝜂𝑅 ∈ V ) → ( 𝑗 𝑅 𝑥 → ( 𝜃𝜓 ) ) )
147 124 127 145 146 syl3c ( ( ∀ 𝑖 ( 𝑆 ( 𝑅𝑟 𝑙 ) 𝑖𝜑 ) ∧ ( 𝑆 ( 𝑅 ∘ ( 𝑅𝑟 𝑙 ) ) 𝑥 ∧ ( ( 𝜂𝑅 ∈ V ) ∧ ( ( 𝑙 + 1 ) ∈ ℕ0 ∧ ( ( ( ( 𝜂𝑅 ∈ V ) ∧ 𝑙 ∈ ℕ0 ) → ∀ 𝑖 ( 𝑆 ( 𝑅𝑟 𝑙 ) 𝑖𝜑 ) ) ∧ ( 𝑙 ∈ ℕ0 ∧ ( 𝑆 ( 𝑅𝑟 𝑙 ) 𝑗𝑗 𝑅 𝑥 ) ) ) ) ) ) ) → 𝜓 )
148 123 147 mpancom ( ( 𝑆 ( 𝑅 ∘ ( 𝑅𝑟 𝑙 ) ) 𝑥 ∧ ( ( 𝜂𝑅 ∈ V ) ∧ ( ( 𝑙 + 1 ) ∈ ℕ0 ∧ ( ( ( ( 𝜂𝑅 ∈ V ) ∧ 𝑙 ∈ ℕ0 ) → ∀ 𝑖 ( 𝑆 ( 𝑅𝑟 𝑙 ) 𝑖𝜑 ) ) ∧ ( 𝑙 ∈ ℕ0 ∧ ( 𝑆 ( 𝑅𝑟 𝑙 ) 𝑗𝑗 𝑅 𝑥 ) ) ) ) ) ) → 𝜓 )
149 148 expcom ( ( ( 𝜂𝑅 ∈ V ) ∧ ( ( 𝑙 + 1 ) ∈ ℕ0 ∧ ( ( ( ( 𝜂𝑅 ∈ V ) ∧ 𝑙 ∈ ℕ0 ) → ∀ 𝑖 ( 𝑆 ( 𝑅𝑟 𝑙 ) 𝑖𝜑 ) ) ∧ ( 𝑙 ∈ ℕ0 ∧ ( 𝑆 ( 𝑅𝑟 𝑙 ) 𝑗𝑗 𝑅 𝑥 ) ) ) ) ) → ( 𝑆 ( 𝑅 ∘ ( 𝑅𝑟 𝑙 ) ) 𝑥𝜓 ) )
150 149 expcom ( ( ( 𝑙 + 1 ) ∈ ℕ0 ∧ ( ( ( ( 𝜂𝑅 ∈ V ) ∧ 𝑙 ∈ ℕ0 ) → ∀ 𝑖 ( 𝑆 ( 𝑅𝑟 𝑙 ) 𝑖𝜑 ) ) ∧ ( 𝑙 ∈ ℕ0 ∧ ( 𝑆 ( 𝑅𝑟 𝑙 ) 𝑗𝑗 𝑅 𝑥 ) ) ) ) → ( ( 𝜂𝑅 ∈ V ) → ( 𝑆 ( 𝑅 ∘ ( 𝑅𝑟 𝑙 ) ) 𝑥𝜓 ) ) )
151 150 expcom ( ( ( ( ( 𝜂𝑅 ∈ V ) ∧ 𝑙 ∈ ℕ0 ) → ∀ 𝑖 ( 𝑆 ( 𝑅𝑟 𝑙 ) 𝑖𝜑 ) ) ∧ ( 𝑙 ∈ ℕ0 ∧ ( 𝑆 ( 𝑅𝑟 𝑙 ) 𝑗𝑗 𝑅 𝑥 ) ) ) → ( ( 𝑙 + 1 ) ∈ ℕ0 → ( ( 𝜂𝑅 ∈ V ) → ( 𝑆 ( 𝑅 ∘ ( 𝑅𝑟 𝑙 ) ) 𝑥𝜓 ) ) ) )
152 151 anassrs ( ( ( ( ( ( 𝜂𝑅 ∈ V ) ∧ 𝑙 ∈ ℕ0 ) → ∀ 𝑖 ( 𝑆 ( 𝑅𝑟 𝑙 ) 𝑖𝜑 ) ) ∧ 𝑙 ∈ ℕ0 ) ∧ ( 𝑆 ( 𝑅𝑟 𝑙 ) 𝑗𝑗 𝑅 𝑥 ) ) → ( ( 𝑙 + 1 ) ∈ ℕ0 → ( ( 𝜂𝑅 ∈ V ) → ( 𝑆 ( 𝑅 ∘ ( 𝑅𝑟 𝑙 ) ) 𝑥𝜓 ) ) ) )
153 152 impcom ( ( ( 𝑙 + 1 ) ∈ ℕ0 ∧ ( ( ( ( ( 𝜂𝑅 ∈ V ) ∧ 𝑙 ∈ ℕ0 ) → ∀ 𝑖 ( 𝑆 ( 𝑅𝑟 𝑙 ) 𝑖𝜑 ) ) ∧ 𝑙 ∈ ℕ0 ) ∧ ( 𝑆 ( 𝑅𝑟 𝑙 ) 𝑗𝑗 𝑅 𝑥 ) ) ) → ( ( 𝜂𝑅 ∈ V ) → ( 𝑆 ( 𝑅 ∘ ( 𝑅𝑟 𝑙 ) ) 𝑥𝜓 ) ) )
154 153 anassrs ( ( ( ( 𝑙 + 1 ) ∈ ℕ0 ∧ ( ( ( ( 𝜂𝑅 ∈ V ) ∧ 𝑙 ∈ ℕ0 ) → ∀ 𝑖 ( 𝑆 ( 𝑅𝑟 𝑙 ) 𝑖𝜑 ) ) ∧ 𝑙 ∈ ℕ0 ) ) ∧ ( 𝑆 ( 𝑅𝑟 𝑙 ) 𝑗𝑗 𝑅 𝑥 ) ) → ( ( 𝜂𝑅 ∈ V ) → ( 𝑆 ( 𝑅 ∘ ( 𝑅𝑟 𝑙 ) ) 𝑥𝜓 ) ) )
155 154 impcom ( ( ( 𝜂𝑅 ∈ V ) ∧ ( ( ( 𝑙 + 1 ) ∈ ℕ0 ∧ ( ( ( ( 𝜂𝑅 ∈ V ) ∧ 𝑙 ∈ ℕ0 ) → ∀ 𝑖 ( 𝑆 ( 𝑅𝑟 𝑙 ) 𝑖𝜑 ) ) ∧ 𝑙 ∈ ℕ0 ) ) ∧ ( 𝑆 ( 𝑅𝑟 𝑙 ) 𝑗𝑗 𝑅 𝑥 ) ) ) → ( 𝑆 ( 𝑅 ∘ ( 𝑅𝑟 𝑙 ) ) 𝑥𝜓 ) )
156 155 anassrs ( ( ( ( 𝜂𝑅 ∈ V ) ∧ ( ( 𝑙 + 1 ) ∈ ℕ0 ∧ ( ( ( ( 𝜂𝑅 ∈ V ) ∧ 𝑙 ∈ ℕ0 ) → ∀ 𝑖 ( 𝑆 ( 𝑅𝑟 𝑙 ) 𝑖𝜑 ) ) ∧ 𝑙 ∈ ℕ0 ) ) ) ∧ ( 𝑆 ( 𝑅𝑟 𝑙 ) 𝑗𝑗 𝑅 𝑥 ) ) → ( 𝑆 ( 𝑅 ∘ ( 𝑅𝑟 𝑙 ) ) 𝑥𝜓 ) )
157 156 impcom ( ( 𝑆 ( 𝑅 ∘ ( 𝑅𝑟 𝑙 ) ) 𝑥 ∧ ( ( ( 𝜂𝑅 ∈ V ) ∧ ( ( 𝑙 + 1 ) ∈ ℕ0 ∧ ( ( ( ( 𝜂𝑅 ∈ V ) ∧ 𝑙 ∈ ℕ0 ) → ∀ 𝑖 ( 𝑆 ( 𝑅𝑟 𝑙 ) 𝑖𝜑 ) ) ∧ 𝑙 ∈ ℕ0 ) ) ) ∧ ( 𝑆 ( 𝑅𝑟 𝑙 ) 𝑗𝑗 𝑅 𝑥 ) ) ) → 𝜓 )
158 157 anassrs ( ( ( 𝑆 ( 𝑅 ∘ ( 𝑅𝑟 𝑙 ) ) 𝑥 ∧ ( ( 𝜂𝑅 ∈ V ) ∧ ( ( 𝑙 + 1 ) ∈ ℕ0 ∧ ( ( ( ( 𝜂𝑅 ∈ V ) ∧ 𝑙 ∈ ℕ0 ) → ∀ 𝑖 ( 𝑆 ( 𝑅𝑟 𝑙 ) 𝑖𝜑 ) ) ∧ 𝑙 ∈ ℕ0 ) ) ) ) ∧ ( 𝑆 ( 𝑅𝑟 𝑙 ) 𝑗𝑗 𝑅 𝑥 ) ) → 𝜓 )
159 117 158 exlimddv ( ( 𝑆 ( 𝑅 ∘ ( 𝑅𝑟 𝑙 ) ) 𝑥 ∧ ( ( 𝜂𝑅 ∈ V ) ∧ ( ( 𝑙 + 1 ) ∈ ℕ0 ∧ ( ( ( ( 𝜂𝑅 ∈ V ) ∧ 𝑙 ∈ ℕ0 ) → ∀ 𝑖 ( 𝑆 ( 𝑅𝑟 𝑙 ) 𝑖𝜑 ) ) ∧ 𝑙 ∈ ℕ0 ) ) ) ) → 𝜓 )
160 159 expcom ( ( ( 𝜂𝑅 ∈ V ) ∧ ( ( 𝑙 + 1 ) ∈ ℕ0 ∧ ( ( ( ( 𝜂𝑅 ∈ V ) ∧ 𝑙 ∈ ℕ0 ) → ∀ 𝑖 ( 𝑆 ( 𝑅𝑟 𝑙 ) 𝑖𝜑 ) ) ∧ 𝑙 ∈ ℕ0 ) ) ) → ( 𝑆 ( 𝑅 ∘ ( 𝑅𝑟 𝑙 ) ) 𝑥𝜓 ) )
161 breq ( ( 𝑅𝑟 ( 𝑙 + 1 ) ) = ( 𝑅 ∘ ( 𝑅𝑟 𝑙 ) ) → ( 𝑆 ( 𝑅𝑟 ( 𝑙 + 1 ) ) 𝑥𝑆 ( 𝑅 ∘ ( 𝑅𝑟 𝑙 ) ) 𝑥 ) )
162 161 imbi1d ( ( 𝑅𝑟 ( 𝑙 + 1 ) ) = ( 𝑅 ∘ ( 𝑅𝑟 𝑙 ) ) → ( ( 𝑆 ( 𝑅𝑟 ( 𝑙 + 1 ) ) 𝑥𝜓 ) ↔ ( 𝑆 ( 𝑅 ∘ ( 𝑅𝑟 𝑙 ) ) 𝑥𝜓 ) ) )
163 160 162 syl5ibr ( ( 𝑅𝑟 ( 𝑙 + 1 ) ) = ( 𝑅 ∘ ( 𝑅𝑟 𝑙 ) ) → ( ( ( 𝜂𝑅 ∈ V ) ∧ ( ( 𝑙 + 1 ) ∈ ℕ0 ∧ ( ( ( ( 𝜂𝑅 ∈ V ) ∧ 𝑙 ∈ ℕ0 ) → ∀ 𝑖 ( 𝑆 ( 𝑅𝑟 𝑙 ) 𝑖𝜑 ) ) ∧ 𝑙 ∈ ℕ0 ) ) ) → ( 𝑆 ( 𝑅𝑟 ( 𝑙 + 1 ) ) 𝑥𝜓 ) ) )
164 111 163 mpcom ( ( ( 𝜂𝑅 ∈ V ) ∧ ( ( 𝑙 + 1 ) ∈ ℕ0 ∧ ( ( ( ( 𝜂𝑅 ∈ V ) ∧ 𝑙 ∈ ℕ0 ) → ∀ 𝑖 ( 𝑆 ( 𝑅𝑟 𝑙 ) 𝑖𝜑 ) ) ∧ 𝑙 ∈ ℕ0 ) ) ) → ( 𝑆 ( 𝑅𝑟 ( 𝑙 + 1 ) ) 𝑥𝜓 ) )
165 164 alrimiv ( ( ( 𝜂𝑅 ∈ V ) ∧ ( ( 𝑙 + 1 ) ∈ ℕ0 ∧ ( ( ( ( 𝜂𝑅 ∈ V ) ∧ 𝑙 ∈ ℕ0 ) → ∀ 𝑖 ( 𝑆 ( 𝑅𝑟 𝑙 ) 𝑖𝜑 ) ) ∧ 𝑙 ∈ ℕ0 ) ) ) → ∀ 𝑥 ( 𝑆 ( 𝑅𝑟 ( 𝑙 + 1 ) ) 𝑥𝜓 ) )
166 107 165 syl6bi ( ( ∀ 𝑥 ( 𝑆 ( 𝑅𝑟 𝑙 ) 𝑥𝜓 ) ↔ ∀ 𝑖 ( 𝑆 ( 𝑅𝑟 𝑙 ) 𝑖𝜑 ) ) → ( ( ( 𝜂𝑅 ∈ V ) ∧ ( ( 𝑙 + 1 ) ∈ ℕ0 ∧ ( ( ( ( 𝜂𝑅 ∈ V ) ∧ 𝑙 ∈ ℕ0 ) → ∀ 𝑥 ( 𝑆 ( 𝑅𝑟 𝑙 ) 𝑥𝜓 ) ) ∧ 𝑙 ∈ ℕ0 ) ) ) → ∀ 𝑥 ( 𝑆 ( 𝑅𝑟 ( 𝑙 + 1 ) ) 𝑥𝜓 ) ) )
167 103 166 ax-mp ( ( ( 𝜂𝑅 ∈ V ) ∧ ( ( 𝑙 + 1 ) ∈ ℕ0 ∧ ( ( ( ( 𝜂𝑅 ∈ V ) ∧ 𝑙 ∈ ℕ0 ) → ∀ 𝑥 ( 𝑆 ( 𝑅𝑟 𝑙 ) 𝑥𝜓 ) ) ∧ 𝑙 ∈ ℕ0 ) ) ) → ∀ 𝑥 ( 𝑆 ( 𝑅𝑟 ( 𝑙 + 1 ) ) 𝑥𝜓 ) )
168 167 anassrs ( ( ( ( 𝜂𝑅 ∈ V ) ∧ ( 𝑙 + 1 ) ∈ ℕ0 ) ∧ ( ( ( ( 𝜂𝑅 ∈ V ) ∧ 𝑙 ∈ ℕ0 ) → ∀ 𝑥 ( 𝑆 ( 𝑅𝑟 𝑙 ) 𝑥𝜓 ) ) ∧ 𝑙 ∈ ℕ0 ) ) → ∀ 𝑥 ( 𝑆 ( 𝑅𝑟 ( 𝑙 + 1 ) ) 𝑥𝜓 ) )
169 168 expcom ( ( ( ( ( 𝜂𝑅 ∈ V ) ∧ 𝑙 ∈ ℕ0 ) → ∀ 𝑥 ( 𝑆 ( 𝑅𝑟 𝑙 ) 𝑥𝜓 ) ) ∧ 𝑙 ∈ ℕ0 ) → ( ( ( 𝜂𝑅 ∈ V ) ∧ ( 𝑙 + 1 ) ∈ ℕ0 ) → ∀ 𝑥 ( 𝑆 ( 𝑅𝑟 ( 𝑙 + 1 ) ) 𝑥𝜓 ) ) )
170 169 expcom ( 𝑙 ∈ ℕ0 → ( ( ( ( 𝜂𝑅 ∈ V ) ∧ 𝑙 ∈ ℕ0 ) → ∀ 𝑥 ( 𝑆 ( 𝑅𝑟 𝑙 ) 𝑥𝜓 ) ) → ( ( ( 𝜂𝑅 ∈ V ) ∧ ( 𝑙 + 1 ) ∈ ℕ0 ) → ∀ 𝑥 ( 𝑆 ( 𝑅𝑟 ( 𝑙 + 1 ) ) 𝑥𝜓 ) ) ) )
171 14 21 28 35 99 170 nn0ind ( 𝑛 ∈ ℕ0 → ( ( ( 𝜂𝑅 ∈ V ) ∧ 𝑛 ∈ ℕ0 ) → ∀ 𝑥 ( 𝑆 ( 𝑅𝑟 𝑛 ) 𝑥𝜓 ) ) )
172 171 anabsi7 ( ( ( 𝜂𝑅 ∈ V ) ∧ 𝑛 ∈ ℕ0 ) → ∀ 𝑥 ( 𝑆 ( 𝑅𝑟 𝑛 ) 𝑥𝜓 ) )
173 172 19.21bi ( ( ( 𝜂𝑅 ∈ V ) ∧ 𝑛 ∈ ℕ0 ) → ( 𝑆 ( 𝑅𝑟 𝑛 ) 𝑥𝜓 ) )
174 173 exp31 ( 𝜂 → ( 𝑅 ∈ V → ( 𝑛 ∈ ℕ0 → ( 𝑆 ( 𝑅𝑟 𝑛 ) 𝑥𝜓 ) ) ) )
175 reldmrelexp Rel dom ↑𝑟
176 175 ovprc1 ( ¬ 𝑅 ∈ V → ( 𝑅𝑟 𝑛 ) = ∅ )
177 176 breqd ( ¬ 𝑅 ∈ V → ( 𝑆 ( 𝑅𝑟 𝑛 ) 𝑥𝑆𝑥 ) )
178 br0 ¬ 𝑆𝑥
179 178 pm2.21i ( 𝑆𝑥𝜓 )
180 177 179 syl6bi ( ¬ 𝑅 ∈ V → ( 𝑆 ( 𝑅𝑟 𝑛 ) 𝑥𝜓 ) )
181 180 a1d ( ¬ 𝑅 ∈ V → ( 𝑛 ∈ ℕ0 → ( 𝑆 ( 𝑅𝑟 𝑛 ) 𝑥𝜓 ) ) )
182 174 181 pm2.61d1 ( 𝜂 → ( 𝑛 ∈ ℕ0 → ( 𝑆 ( 𝑅𝑟 𝑛 ) 𝑥𝜓 ) ) )