Metamath Proof Explorer


Theorem relexpsucld

Description: A reduction for relation exponentiation to the left. (Contributed by Drahflow, 12-Nov-2015) (Revised by RP, 30-May-2020) (Revised by AV, 12-Jul-2024)

Ref Expression
Hypotheses relexpsucrd.1 ( 𝜑 → Rel 𝑅 )
relexpsucrd.2 ( 𝜑𝑁 ∈ ℕ0 )
Assertion relexpsucld ( 𝜑 → ( 𝑅𝑟 ( 𝑁 + 1 ) ) = ( 𝑅 ∘ ( 𝑅𝑟 𝑁 ) ) )

Proof

Step Hyp Ref Expression
1 relexpsucrd.1 ( 𝜑 → Rel 𝑅 )
2 relexpsucrd.2 ( 𝜑𝑁 ∈ ℕ0 )
3 simpr ( ( 𝜑𝑅 ∈ V ) → 𝑅 ∈ V )
4 1 adantr ( ( 𝜑𝑅 ∈ V ) → Rel 𝑅 )
5 2 adantr ( ( 𝜑𝑅 ∈ V ) → 𝑁 ∈ ℕ0 )
6 relexpsucl ( ( 𝑅 ∈ V ∧ Rel 𝑅𝑁 ∈ ℕ0 ) → ( 𝑅𝑟 ( 𝑁 + 1 ) ) = ( 𝑅 ∘ ( 𝑅𝑟 𝑁 ) ) )
7 3 4 5 6 syl3anc ( ( 𝜑𝑅 ∈ V ) → ( 𝑅𝑟 ( 𝑁 + 1 ) ) = ( 𝑅 ∘ ( 𝑅𝑟 𝑁 ) ) )
8 7 ex ( 𝜑 → ( 𝑅 ∈ V → ( 𝑅𝑟 ( 𝑁 + 1 ) ) = ( 𝑅 ∘ ( 𝑅𝑟 𝑁 ) ) ) )
9 reldmrelexp Rel dom ↑𝑟
10 9 ovprc1 ( ¬ 𝑅 ∈ V → ( 𝑅𝑟 ( 𝑁 + 1 ) ) = ∅ )
11 9 ovprc1 ( ¬ 𝑅 ∈ V → ( 𝑅𝑟 𝑁 ) = ∅ )
12 11 coeq2d ( ¬ 𝑅 ∈ V → ( 𝑅 ∘ ( 𝑅𝑟 𝑁 ) ) = ( 𝑅 ∘ ∅ ) )
13 co02 ( 𝑅 ∘ ∅ ) = ∅
14 12 13 eqtr2di ( ¬ 𝑅 ∈ V → ∅ = ( 𝑅 ∘ ( 𝑅𝑟 𝑁 ) ) )
15 10 14 eqtrd ( ¬ 𝑅 ∈ V → ( 𝑅𝑟 ( 𝑁 + 1 ) ) = ( 𝑅 ∘ ( 𝑅𝑟 𝑁 ) ) )
16 8 15 pm2.61d1 ( 𝜑 → ( 𝑅𝑟 ( 𝑁 + 1 ) ) = ( 𝑅 ∘ ( 𝑅𝑟 𝑁 ) ) )