Metamath Proof Explorer


Theorem relexpindlem

Description: Principle of transitive induction, finite and non-class version. The first three hypotheses give various existences, the next three give necessary substitutions and the last two are the basis and the induction hypothesis. (Contributed by Drahflow, 12-Nov-2015) (Revised by RP, 30-May-2020) (Proof shortened by Peter Mazsa, 2-Oct-2022) (Revised by AV, 13-Jul-2024)

Ref Expression
Hypotheses relexpindlem.1 η Rel R
relexpindlem.2 η S V
relexpindlem.3 i = S φ χ
relexpindlem.4 i = x φ ψ
relexpindlem.5 i = j φ θ
relexpindlem.6 η χ
relexpindlem.7 η j R x θ ψ
Assertion relexpindlem η n 0 S R r n x ψ

Proof

Step Hyp Ref Expression
1 relexpindlem.1 η Rel R
2 relexpindlem.2 η S V
3 relexpindlem.3 i = S φ χ
4 relexpindlem.4 i = x φ ψ
5 relexpindlem.5 i = j φ θ
6 relexpindlem.6 η χ
7 relexpindlem.7 η j R x θ ψ
8 eleq1 k = 0 k 0 0 0
9 8 anbi2d k = 0 η R V k 0 η R V 0 0
10 oveq2 k = 0 R r k = R r 0
11 10 breqd k = 0 S R r k x S R r 0 x
12 11 imbi1d k = 0 S R r k x ψ S R r 0 x ψ
13 12 albidv k = 0 x S R r k x ψ x S R r 0 x ψ
14 9 13 imbi12d k = 0 η R V k 0 x S R r k x ψ η R V 0 0 x S R r 0 x ψ
15 eleq1 k = l k 0 l 0
16 15 anbi2d k = l η R V k 0 η R V l 0
17 oveq2 k = l R r k = R r l
18 17 breqd k = l S R r k x S R r l x
19 18 imbi1d k = l S R r k x ψ S R r l x ψ
20 19 albidv k = l x S R r k x ψ x S R r l x ψ
21 16 20 imbi12d k = l η R V k 0 x S R r k x ψ η R V l 0 x S R r l x ψ
22 eleq1 k = l + 1 k 0 l + 1 0
23 22 anbi2d k = l + 1 η R V k 0 η R V l + 1 0
24 oveq2 k = l + 1 R r k = R r l + 1
25 24 breqd k = l + 1 S R r k x S R r l + 1 x
26 25 imbi1d k = l + 1 S R r k x ψ S R r l + 1 x ψ
27 26 albidv k = l + 1 x S R r k x ψ x S R r l + 1 x ψ
28 23 27 imbi12d k = l + 1 η R V k 0 x S R r k x ψ η R V l + 1 0 x S R r l + 1 x ψ
29 eleq1 k = n k 0 n 0
30 29 anbi2d k = n η R V k 0 η R V n 0
31 oveq2 k = n R r k = R r n
32 31 breqd k = n S R r k x S R r n x
33 32 imbi1d k = n S R r k x ψ S R r n x ψ
34 33 albidv k = n x S R r k x ψ x S R r n x ψ
35 30 34 imbi12d k = n η R V k 0 x S R r k x ψ η R V n 0 x S R r n x ψ
36 1 anim1ci η R V R V Rel R
37 36 adantr η R V 0 0 R V Rel R
38 relexp0 R V Rel R R r 0 = I R
39 37 38 syl η R V 0 0 R r 0 = I R
40 6 adantr η R V χ
41 simpl η R V 0 0 η R V
42 2 ad2antrl χ η R V S V
43 simprl i = S η R V φ i = S η R V
44 43 40 jccil i = S η R V φ i = S χ η R V
45 44 expcom η R V φ i = S i = S χ η R V
46 45 expcom φ i = S η R V i = S χ η R V
47 46 expcom i = S φ η R V i = S χ η R V
48 47 3imp1 i = S φ η R V i = S χ η R V
49 48 expcom i = S i = S φ η R V χ η R V
50 simprr χ η R V i = S i = S
51 3 ad2antll χ η R V i = S φ χ
52 51 bicomd χ η R V i = S χ φ
53 anbi1 χ φ χ η R V i = S φ η R V i = S
54 simpl φ η R V i = S φ
55 53 54 syl6bi χ φ χ η R V i = S φ
56 52 55 mpcom χ η R V i = S φ
57 simprl χ η R V i = S η R V
58 50 56 57 3jca χ η R V i = S i = S φ η R V
59 58 anassrs χ η R V i = S i = S φ η R V
60 59 expcom i = S χ η R V i = S φ η R V
61 49 60 impbid i = S i = S φ η R V χ η R V
62 61 spcegv S V χ η R V i i = S φ η R V
63 42 62 mpcom χ η R V i i = S φ η R V
64 40 41 63 syl2an2r η R V 0 0 i i = S φ η R V
65 simpl S I R x i i = S φ η R V η R V 0 0 S I R x
66 df-br S I R x S x I R
67 65 66 sylib S I R x i i = S φ η R V η R V 0 0 S x I R
68 vex x V
69 68 opelresi S x I R S R S x I
70 67 69 sylib S I R x i i = S φ η R V η R V 0 0 S R S x I
71 simplr S R S x I S I R x i i = S φ η R V η R V 0 0 S x I
72 df-br S I x S x I
73 71 72 sylibr S R S x I S I R x i i = S φ η R V η R V 0 0 S I x
74 68 ideq S I x S = x
75 73 74 sylib S R S x I S I R x i i = S φ η R V η R V 0 0 S = x
76 70 75 mpancom S I R x i i = S φ η R V η R V 0 0 S = x
77 breq1 S = x S I R x x I R x
78 eqeq2 S = x i = S i = x
79 78 3anbi1d S = x i = S φ η R V i = x φ η R V
80 79 exbidv S = x i i = S φ η R V i i = x φ η R V
81 80 anbi1d S = x i i = S φ η R V η R V 0 0 i i = x φ η R V η R V 0 0
82 77 81 anbi12d S = x S I R x i i = S φ η R V η R V 0 0 x I R x i i = x φ η R V η R V 0 0
83 simprl η R V φ i = x φ
84 4 ad2antll η R V φ i = x φ ψ
85 83 84 mpbid η R V φ i = x ψ
86 85 expcom φ i = x η R V ψ
87 86 expcom i = x φ η R V ψ
88 87 3imp i = x φ η R V ψ
89 88 exlimiv i i = x φ η R V ψ
90 89 ad2antrl x I R x i i = x φ η R V η R V 0 0 ψ
91 82 90 syl6bi S = x S I R x i i = S φ η R V η R V 0 0 ψ
92 76 91 mpcom S I R x i i = S φ η R V η R V 0 0 ψ
93 92 expcom i i = S φ η R V η R V 0 0 S I R x ψ
94 64 93 mpancom η R V 0 0 S I R x ψ
95 breq R r 0 = I R S R r 0 x S I R x
96 95 imbi1d R r 0 = I R S R r 0 x ψ S I R x ψ
97 94 96 syl5ibr R r 0 = I R η R V 0 0 S R r 0 x ψ
98 39 97 mpcom η R V 0 0 S R r 0 x ψ
99 98 alrimiv η R V 0 0 x S R r 0 x ψ
100 breq2 i = x S R r l i S R r l x
101 100 4 imbi12d i = x S R r l i φ S R r l x ψ
102 101 cbvalvw i S R r l i φ x S R r l x ψ
103 102 bicomi x S R r l x ψ i S R r l i φ
104 imbi2 x S R r l x ψ i S R r l i φ η R V l 0 x S R r l x ψ η R V l 0 i S R r l i φ
105 104 anbi1d x S R r l x ψ i S R r l i φ η R V l 0 x S R r l x ψ l 0 η R V l 0 i S R r l i φ l 0
106 105 anbi2d x S R r l x ψ i S R r l i φ l + 1 0 η R V l 0 x S R r l x ψ l 0 l + 1 0 η R V l 0 i S R r l i φ l 0
107 106 anbi2d x S R r l x ψ i S R r l i φ η R V l + 1 0 η R V l 0 x S R r l x ψ l 0 η R V l + 1 0 η R V l 0 i S R r l i φ l 0
108 1 adantr η R V Rel R
109 108 adantr η R V l + 1 0 η R V l 0 i S R r l i φ l 0 Rel R
110 simprrr η R V l + 1 0 η R V l 0 i S R r l i φ l 0 l 0
111 109 110 relexpsucld η R V l + 1 0 η R V l 0 i S R r l i φ l 0 R r l + 1 = R R r l
112 simpl S R R r l x η R V l + 1 0 η R V l 0 i S R r l i φ l 0 S R R r l x
113 2 adantr η R V S V
114 113 ad2antrl S R R r l x η R V l + 1 0 η R V l 0 i S R r l i φ l 0 S V
115 brcog S V x V S R R r l x j S R r l j j R x
116 114 68 115 sylancl S R R r l x η R V l + 1 0 η R V l 0 i S R r l i φ l 0 S R R r l x j S R r l j j R x
117 112 116 mpbid S R R r l x η R V l + 1 0 η R V l 0 i S R r l i φ l 0 j S R r l j j R x
118 simprl S R R r l x η R V l + 1 0 η R V l 0 i S R r l i φ l 0 S R r l j j R x η R V
119 simprrl l + 1 0 η R V l 0 i S R r l i φ l 0 S R r l j j R x l 0
120 119 ad2antll S R R r l x η R V l + 1 0 η R V l 0 i S R r l i φ l 0 S R r l j j R x l 0
121 simprl l + 1 0 η R V l 0 i S R r l i φ l 0 S R r l j j R x η R V l 0 i S R r l i φ
122 121 ad2antll S R R r l x η R V l + 1 0 η R V l 0 i S R r l i φ l 0 S R r l j j R x η R V l 0 i S R r l i φ
123 118 120 122 mp2and S R R r l x η R V l + 1 0 η R V l 0 i S R r l i φ l 0 S R r l j j R x i S R r l i φ
124 simprrl i S R r l i φ S R R r l x η R V l + 1 0 η R V l 0 i S R r l i φ l 0 S R r l j j R x η R V
125 simprrr η R V l 0 i S R r l i φ l 0 S R r l j j R x j R x
126 125 ad2antll η R V l + 1 0 η R V l 0 i S R r l i φ l 0 S R r l j j R x j R x
127 126 ad2antll i S R r l i φ S R R r l x η R V l + 1 0 η R V l 0 i S R r l i φ l 0 S R r l j j R x j R x
128 breq2 i = j S R r l i S R r l j
129 128 5 imbi12d i = j S R r l i φ S R r l j θ
130 129 cbvalvw i S R r l i φ j S R r l j θ
131 id i S R r l i φ j S R r l j θ i S R r l i φ j S R r l j θ
132 imbi2 i S R r l i φ j S R r l j θ η R V l 0 i S R r l i φ η R V l 0 j S R r l j θ
133 132 anbi1d i S R r l i φ j S R r l j θ η R V l 0 i S R r l i φ l 0 S R r l j j R x η R V l 0 j S R r l j θ l 0 S R r l j j R x
134 133 anbi2d i S R r l i φ j S R r l j θ l + 1 0 η R V l 0 i S R r l i φ l 0 S R r l j j R x l + 1 0 η R V l 0 j S R r l j θ l 0 S R r l j j R x
135 134 anbi2d i S R r l i φ j S R r l j θ η R V l + 1 0 η R V l 0 i S R r l i φ l 0 S R r l j j R x η R V l + 1 0 η R V l 0 j S R r l j θ l 0 S R r l j j R x
136 135 anbi2d i S R r l i φ j S R r l j θ S R R r l x η R V l + 1 0 η R V l 0 i S R r l i φ l 0 S R r l j j R x S R R r l x η R V l + 1 0 η R V l 0 j S R r l j θ l 0 S R r l j j R x
137 131 136 anbi12d i S R r l i φ j S R r l j θ i S R r l i φ S R R r l x η R V l + 1 0 η R V l 0 i S R r l i φ l 0 S R r l j j R x j S R r l j θ S R R r l x η R V l + 1 0 η R V l 0 j S R r l j θ l 0 S R r l j j R x
138 simprrl η R V l 0 j S R r l j θ l 0 S R r l j j R x S R r l j
139 138 ad2antll η R V l + 1 0 η R V l 0 j S R r l j θ l 0 S R r l j j R x S R r l j
140 139 ad2antll j S R r l j θ S R R r l x η R V l + 1 0 η R V l 0 j S R r l j θ l 0 S R r l j j R x S R r l j
141 sp j S R r l j θ S R r l j θ
142 141 adantr j S R r l j θ S R R r l x η R V l + 1 0 η R V l 0 j S R r l j θ l 0 S R r l j j R x S R r l j θ
143 140 142 mpd j S R r l j θ S R R r l x η R V l + 1 0 η R V l 0 j S R r l j θ l 0 S R r l j j R x θ
144 137 143 syl6bi i S R r l i φ j S R r l j θ i S R r l i φ S R R r l x η R V l + 1 0 η R V l 0 i S R r l i φ l 0 S R r l j j R x θ
145 130 144 ax-mp i S R r l i φ S R R r l x η R V l + 1 0 η R V l 0 i S R r l i φ l 0 S R r l j j R x θ
146 7 adantr η R V j R x θ ψ
147 124 127 145 146 syl3c i S R r l i φ S R R r l x η R V l + 1 0 η R V l 0 i S R r l i φ l 0 S R r l j j R x ψ
148 123 147 mpancom S R R r l x η R V l + 1 0 η R V l 0 i S R r l i φ l 0 S R r l j j R x ψ
149 148 expcom η R V l + 1 0 η R V l 0 i S R r l i φ l 0 S R r l j j R x S R R r l x ψ
150 149 expcom l + 1 0 η R V l 0 i S R r l i φ l 0 S R r l j j R x η R V S R R r l x ψ
151 150 expcom η R V l 0 i S R r l i φ l 0 S R r l j j R x l + 1 0 η R V S R R r l x ψ
152 151 anassrs η R V l 0 i S R r l i φ l 0 S R r l j j R x l + 1 0 η R V S R R r l x ψ
153 152 impcom l + 1 0 η R V l 0 i S R r l i φ l 0 S R r l j j R x η R V S R R r l x ψ
154 153 anassrs l + 1 0 η R V l 0 i S R r l i φ l 0 S R r l j j R x η R V S R R r l x ψ
155 154 impcom η R V l + 1 0 η R V l 0 i S R r l i φ l 0 S R r l j j R x S R R r l x ψ
156 155 anassrs η R V l + 1 0 η R V l 0 i S R r l i φ l 0 S R r l j j R x S R R r l x ψ
157 156 impcom S R R r l x η R V l + 1 0 η R V l 0 i S R r l i φ l 0 S R r l j j R x ψ
158 157 anassrs S R R r l x η R V l + 1 0 η R V l 0 i S R r l i φ l 0 S R r l j j R x ψ
159 117 158 exlimddv S R R r l x η R V l + 1 0 η R V l 0 i S R r l i φ l 0 ψ
160 159 expcom η R V l + 1 0 η R V l 0 i S R r l i φ l 0 S R R r l x ψ
161 breq R r l + 1 = R R r l S R r l + 1 x S R R r l x
162 161 imbi1d R r l + 1 = R R r l S R r l + 1 x ψ S R R r l x ψ
163 160 162 syl5ibr R r l + 1 = R R r l η R V l + 1 0 η R V l 0 i S R r l i φ l 0 S R r l + 1 x ψ
164 111 163 mpcom η R V l + 1 0 η R V l 0 i S R r l i φ l 0 S R r l + 1 x ψ
165 164 alrimiv η R V l + 1 0 η R V l 0 i S R r l i φ l 0 x S R r l + 1 x ψ
166 107 165 syl6bi x S R r l x ψ i S R r l i φ η R V l + 1 0 η R V l 0 x S R r l x ψ l 0 x S R r l + 1 x ψ
167 103 166 ax-mp η R V l + 1 0 η R V l 0 x S R r l x ψ l 0 x S R r l + 1 x ψ
168 167 anassrs η R V l + 1 0 η R V l 0 x S R r l x ψ l 0 x S R r l + 1 x ψ
169 168 expcom η R V l 0 x S R r l x ψ l 0 η R V l + 1 0 x S R r l + 1 x ψ
170 169 expcom l 0 η R V l 0 x S R r l x ψ η R V l + 1 0 x S R r l + 1 x ψ
171 14 21 28 35 99 170 nn0ind n 0 η R V n 0 x S R r n x ψ
172 171 anabsi7 η R V n 0 x S R r n x ψ
173 172 19.21bi η R V n 0 S R r n x ψ
174 173 exp31 η R V n 0 S R r n x ψ
175 reldmrelexp Rel dom r
176 175 ovprc1 ¬ R V R r n =
177 176 breqd ¬ R V S R r n x S x
178 br0 ¬ S x
179 178 pm2.21i S x ψ
180 177 179 syl6bi ¬ R V S R r n x ψ
181 180 a1d ¬ R V n 0 S R r n x ψ
182 174 181 pm2.61d1 η n 0 S R r n x ψ