Metamath Proof Explorer


Theorem relogbzcl

Description: Closure of the general logarithm with integer base on positive reals. (Contributed by Thierry Arnoux, 27-Sep-2017) (Proof shortened by AV, 9-Jun-2020)

Ref Expression
Assertion relogbzcl B2X+logBX

Proof

Step Hyp Ref Expression
1 zgt1rpn0n1 B2B+B0B1
2 relogbcl B+X+B1logBX
3 2 3com23 B+B1X+logBX
4 3 3expia B+B1X+logBX
5 4 3adant2 B+B0B1X+logBX
6 1 5 syl B2X+logBX
7 6 imp B2X+logBX