Metamath Proof Explorer


Theorem relogcl

Description: Closure of the natural logarithm function on positive reals. (Contributed by Steve Rodriguez, 25-Nov-2007)

Ref Expression
Assertion relogcl A+logA

Proof

Step Hyp Ref Expression
1 fvres A+log+A=logA
2 relogf1o log+:+1-1 onto
3 f1of log+:+1-1 ontolog+:+
4 2 3 ax-mp log+:+
5 4 ffvelcdmi A+log+A
6 1 5 eqeltrrd A+logA