Description: Lemma for relogmul and relogdiv . Remark of Cohen p. 301 ("The proof of Property 3 is quite similar to the proof given for Property 2"). (Contributed by Steve Rodriguez, 25-Nov-2007)
Ref | Expression | ||
---|---|---|---|
Hypotheses | relogoprlem.1 | |
|
relogoprlem.2 | |
||
Assertion | relogoprlem | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relogoprlem.1 | |
|
2 | relogoprlem.2 | |
|
3 | reeflog | |
|
4 | reeflog | |
|
5 | 3 4 | oveqan12d | |
6 | 5 | fveq2d | |
7 | relogcl | |
|
8 | relogcl | |
|
9 | recn | |
|
10 | recn | |
|
11 | 1 | fveq2d | |
12 | 9 10 11 | syl2an | |
13 | relogef | |
|
14 | 2 13 | syl | |
15 | 12 14 | eqtr3d | |
16 | 7 8 15 | syl2an | |
17 | 6 16 | eqtr3d | |