Metamath Proof Explorer


Theorem relogoprlem

Description: Lemma for relogmul and relogdiv . Remark of Cohen p. 301 ("The proof of Property 3 is quite similar to the proof given for Property 2"). (Contributed by Steve Rodriguez, 25-Nov-2007)

Ref Expression
Hypotheses relogoprlem.1 logAlogBelogAFlogB=elogAGelogB
relogoprlem.2 logAlogBlogAFlogB
Assertion relogoprlem A+B+logAGB=logAFlogB

Proof

Step Hyp Ref Expression
1 relogoprlem.1 logAlogBelogAFlogB=elogAGelogB
2 relogoprlem.2 logAlogBlogAFlogB
3 reeflog A+elogA=A
4 reeflog B+elogB=B
5 3 4 oveqan12d A+B+elogAGelogB=AGB
6 5 fveq2d A+B+logelogAGelogB=logAGB
7 relogcl A+logA
8 relogcl B+logB
9 recn logAlogA
10 recn logBlogB
11 1 fveq2d logAlogBlogelogAFlogB=logelogAGelogB
12 9 10 11 syl2an logAlogBlogelogAFlogB=logelogAGelogB
13 relogef logAFlogBlogelogAFlogB=logAFlogB
14 2 13 syl logAlogBlogelogAFlogB=logAFlogB
15 12 14 eqtr3d logAlogBlogelogAGelogB=logAFlogB
16 7 8 15 syl2an A+B+logelogAGelogB=logAFlogB
17 6 16 eqtr3d A+B+logAGB=logAFlogB