Metamath Proof Explorer


Theorem relopabVD

Description: Virtual deduction proof of relopab . The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. relopab is relopabVD without virtual deductions and was automatically derived from relopabVD .

1:: |- (. y = v ->. y = v ).
2:1: |- (. y = v ->. <. x ,. y >. = <. x ,. v >. ).
3:: |- (. y = v ,. x = u ->. x = u ).
4:3: |- (. y = v ,. x = u ->. <. x ,. v >. = <. u , v >. ).
5:2,4: |- (. y = v ,. x = u ->. <. x ,. y >. = <. u , v >. ).
6:5: |- (. y = v ,. x = u ->. ( z = <. x ,. y >. -> z = <. u , v >. ) ).
7:6: |- (. y = v ->. ( x = u -> ( z = <. x ,. y >. -> z = <. u , v >. ) ) ).
8:7: |- ( y = v -> ( x = u -> ( z = <. x ,. y >. -> z = <. u , v >. ) ) )
9:8: |- ( E. v y = v -> E. v ( x = u -> ( z = <. x , y >. -> z = <. u , v >. ) ) )
90:: |- ( v = y <-> y = v )
91:90: |- ( E. v v = y <-> E. v y = v )
92:: |- E. v v = y
10:91,92: |- E. v y = v
11:9,10: |- E. v ( x = u -> ( z = <. x ,. y >. -> z = <. u , v >. ) )
12:11: |- ( x = u -> E. v ( z = <. x ,. y >. -> z = <. u , v >. ) )
13:: |- ( E. v ( z = <. x ,. y >. -> z = <. u , v >. ) -> ( z = <. x , y >. -> E. v z = <. u , v >. ) )
14:12,13: |- ( x = u -> ( z = <. x ,. y >. -> E. v z = <. u , v >. ) )
15:14: |- ( E. u x = u -> E. u ( z = <. x ,. y >. -> E. v z = <. u , v >. ) )
150:: |- ( u = x <-> x = u )
151:150: |- ( E. u u = x <-> E. u x = u )
152:: |- E. u u = x
16:151,152: |- E. u x = u
17:15,16: |- E. u ( z = <. x ,. y >. -> E. v z = <. u , v >. )
18:17: |- ( z = <. x ,. y >. -> E. u E. v z = <. u , v >. )
19:18: |- ( E. y z = <. x ,. y >. -> E. y E. u E. v z = <. u , v >. )
20:: |- ( E. y E. u E. v z = <. u ,. v >. -> E. u E. v z = <. u , v >. )
21:19,20: |- ( E. y z = <. x ,. y >. -> E. u E. v z = <. u , v >. )
22:21: |- ( E. x E. y z = <. x ,. y >. -> E. x E. u E. v z = <. u , v >. )
23:: |- ( E. x E. u E. v z = <. u ,. v >. -> E. u E. v z = <. u , v >. )
24:22,23: |- ( E. x E. y z = <. x ,. y >. -> E. u E. v z = <. u , v >. )
25:24: |- { z | E. x E. y z = <. x ,. y >. } C_ { z | E. u E. v z = <. u , v >. }
26:: |- x e.V
27:: |- y e. V
28:26,27: |- ( x e.V /\ y e. V )
29:28: |- ( z = <. x ,. y >. <-> ( z = <. x ,. y >. /\ ( x e.V /\ y e. V ) ) )
30:29: |- ( E. y z = <. x ,. y >. <-> E. y ( z = <. x , y >. /\ ( x e.V /\ y e. V ) ) )
31:30: |- ( E. x E. y z = <. x ,. y >. <-> E. x E. y ( z = <. x , y >. /\ ( x e.V /\ y e. V ) ) )
32:31: |- { z | E. x E. y z = <. x ,. y >. } = { z | E. x E. y ( z = <. x , y >. /\ ( x e.V /\ y e. V ) ) }
320:25,32: |- { z | E. x E. y ( z = <. x ,. y >. /\ ( x e.V /\ y e. V ) ) } C_ { z | E. u E. v z = <. u , v >. }
33:: |- u e.V
34:: |- v e. V
35:33,34: |- ( u e.V /\ v e. V )
36:35: |- ( z = <. u ,. v >. <-> ( z = <. u ,. v >. /\ ( u e.V /\ v e. V ) ) )
37:36: |- ( E. v z = <. u ,. v >. <-> E. v ( z = <. u , v >. /\ ( u e.V /\ v e. V ) ) )
38:37: |- ( E. u E. v z = <. u ,. v >. <-> E. u E. v ( z = <. u , v >. /\ ( u e.V /\ v e. V ) ) )
39:38: |- { z | E. u E. v z = <. u ,. v >. } = { z | E. u E. v ( z = <. u , v >. /\ ( u e.V /\ v e. V ) ) }
40:320,39: |- { z | E. x E. y ( z = <. x ,. y >. /\ ( x e.V /\ y e. V ) ) } C_ { z | E. u E. v ( z = <. u , v >. /\ ( u e.V /\ v e. V ) ) }
41:: |- { <. x ,. y >. | ( x e.V /\ y e. V ) } = { z | E. x E. y ( z = <. x , y >. /\ ( x e.V /\ y e. V ) ) }
42:: |- { <. u ,. v >. | ( u e.V /\ v e. V ) } = { z | E. u E. v ( z = <. u , v >. /\ ( u e.V /\ v e. V ) ) }
43:40,41,42: |- { <. x ,. y >. | ( x e.V /\ y e. V ) } C_ { <. u , v >. | ( u e.V /\ v e. V ) }
44:: |- { <. u ,. v >. | ( u e.V /\ v e. V ) } = (V X. V )
45:43,44: |- { <. x ,. y >. | ( x e.V /\ y e. V ) } C_ (V X. V )
46:28: |- ( ph -> ( x e.V /\ y e. V ) )
47:46: |- { <. x ,. y >. | ph } C_ { <. x ,. y >. | ( x e.V /\ y e. V ) }
48:45,47: |- { <. x ,. y >. | ph } C_ (V X. V )
qed:48: |- Rel { <. x ,. y >. | ph }
(Contributed by Alan Sare, 9-Jul-2013) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion relopabVD Relxy|φ

Proof

Step Hyp Ref Expression
1 vex xV
2 vex yV
3 1 2 pm3.2i xVyV
4 3 a1i φxVyV
5 4 ssopab2i xy|φxy|xVyV
6 3 biantru z=xyz=xyxVyV
7 6 exbii yz=xyyz=xyxVyV
8 7 exbii xyz=xyxyz=xyxVyV
9 8 abbii z|xyz=xy=z|xyz=xyxVyV
10 ax6ev uu=x
11 equcom u=xx=u
12 11 exbii uu=xux=u
13 10 12 mpbi ux=u
14 ax6ev vv=y
15 equcom v=yy=v
16 15 exbii vv=yvy=v
17 14 16 mpbi vy=v
18 idn1 y=vy=v
19 opeq2 y=vxy=xv
20 18 19 e1a y=vxy=xv
21 idn2 y=v,x=ux=u
22 opeq1 x=uxv=uv
23 21 22 e2 y=v,x=uxv=uv
24 eqeq1 xy=xvxy=uvxv=uv
25 24 biimprd xy=xvxv=uvxy=uv
26 20 23 25 e12 y=v,x=uxy=uv
27 eqeq2 xy=uvz=xyz=uv
28 27 biimpd xy=uvz=xyz=uv
29 26 28 e2 y=v,x=uz=xyz=uv
30 29 in2 y=vx=uz=xyz=uv
31 30 in1 y=vx=uz=xyz=uv
32 31 eximi vy=vvx=uz=xyz=uv
33 17 32 ax-mp vx=uz=xyz=uv
34 33 19.37iv x=uvz=xyz=uv
35 19.37v vz=xyz=uvz=xyvz=uv
36 35 biimpi vz=xyz=uvz=xyvz=uv
37 34 36 syl x=uz=xyvz=uv
38 37 eximi ux=uuz=xyvz=uv
39 13 38 ax-mp uz=xyvz=uv
40 39 19.37iv z=xyuvz=uv
41 40 eximi yz=xyyuvz=uv
42 19.9v yuvz=uvuvz=uv
43 42 biimpi yuvz=uvuvz=uv
44 41 43 syl yz=xyuvz=uv
45 44 eximi xyz=xyxuvz=uv
46 19.9v xuvz=uvuvz=uv
47 46 biimpi xuvz=uvuvz=uv
48 45 47 syl xyz=xyuvz=uv
49 48 ss2abi z|xyz=xyz|uvz=uv
50 9 49 eqsstrri z|xyz=xyxVyVz|uvz=uv
51 vex uV
52 vex vV
53 51 52 pm3.2i uVvV
54 53 biantru z=uvz=uvuVvV
55 54 exbii vz=uvvz=uvuVvV
56 55 exbii uvz=uvuvz=uvuVvV
57 56 abbii z|uvz=uv=z|uvz=uvuVvV
58 50 57 sseqtri z|xyz=xyxVyVz|uvz=uvuVvV
59 df-opab xy|xVyV=z|xyz=xyxVyV
60 df-opab uv|uVvV=z|uvz=uvuVvV
61 58 59 60 3sstr4i xy|xVyVuv|uVvV
62 df-xp V×V=uv|uVvV
63 62 eqcomi uv|uVvV=V×V
64 61 63 sseqtri xy|xVyVV×V
65 5 64 sstri xy|φV×V
66 df-rel Relxy|φxy|φV×V
67 66 biimpri xy|φV×VRelxy|φ
68 65 67 e0a Relxy|φ