Metamath Proof Explorer


Theorem relopabVD

Description: Virtual deduction proof of relopab . The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. relopab is relopabVD without virtual deductions and was automatically derived from relopabVD .

1:: |- (. y = v ->. y = v ).
2:1: |- (. y = v ->. <. x ,. y >. = <. x ,. v >. ).
3:: |- (. y = v ,. x = u ->. x = u ).
4:3: |- (. y = v ,. x = u ->. <. x ,. v >. = <. u , v >. ).
5:2,4: |- (. y = v ,. x = u ->. <. x ,. y >. = <. u , v >. ).
6:5: |- (. y = v ,. x = u ->. ( z = <. x ,. y >. -> z = <. u , v >. ) ).
7:6: |- (. y = v ->. ( x = u -> ( z = <. x ,. y >. -> z = <. u , v >. ) ) ).
8:7: |- ( y = v -> ( x = u -> ( z = <. x ,. y >. -> z = <. u , v >. ) ) )
9:8: |- ( E. v y = v -> E. v ( x = u -> ( z = <. x , y >. -> z = <. u , v >. ) ) )
90:: |- ( v = y <-> y = v )
91:90: |- ( E. v v = y <-> E. v y = v )
92:: |- E. v v = y
10:91,92: |- E. v y = v
11:9,10: |- E. v ( x = u -> ( z = <. x ,. y >. -> z = <. u , v >. ) )
12:11: |- ( x = u -> E. v ( z = <. x ,. y >. -> z = <. u , v >. ) )
13:: |- ( E. v ( z = <. x ,. y >. -> z = <. u , v >. ) -> ( z = <. x , y >. -> E. v z = <. u , v >. ) )
14:12,13: |- ( x = u -> ( z = <. x ,. y >. -> E. v z = <. u , v >. ) )
15:14: |- ( E. u x = u -> E. u ( z = <. x ,. y >. -> E. v z = <. u , v >. ) )
150:: |- ( u = x <-> x = u )
151:150: |- ( E. u u = x <-> E. u x = u )
152:: |- E. u u = x
16:151,152: |- E. u x = u
17:15,16: |- E. u ( z = <. x ,. y >. -> E. v z = <. u , v >. )
18:17: |- ( z = <. x ,. y >. -> E. u E. v z = <. u , v >. )
19:18: |- ( E. y z = <. x ,. y >. -> E. y E. u E. v z = <. u , v >. )
20:: |- ( E. y E. u E. v z = <. u ,. v >. -> E. u E. v z = <. u , v >. )
21:19,20: |- ( E. y z = <. x ,. y >. -> E. u E. v z = <. u , v >. )
22:21: |- ( E. x E. y z = <. x ,. y >. -> E. x E. u E. v z = <. u , v >. )
23:: |- ( E. x E. u E. v z = <. u ,. v >. -> E. u E. v z = <. u , v >. )
24:22,23: |- ( E. x E. y z = <. x ,. y >. -> E. u E. v z = <. u , v >. )
25:24: |- { z | E. x E. y z = <. x ,. y >. } C_ { z | E. u E. v z = <. u , v >. }
26:: |- x e.V
27:: |- y e. V
28:26,27: |- ( x e.V /\ y e. V )
29:28: |- ( z = <. x ,. y >. <-> ( z = <. x ,. y >. /\ ( x e.V /\ y e. V ) ) )
30:29: |- ( E. y z = <. x ,. y >. <-> E. y ( z = <. x , y >. /\ ( x e.V /\ y e. V ) ) )
31:30: |- ( E. x E. y z = <. x ,. y >. <-> E. x E. y ( z = <. x , y >. /\ ( x e.V /\ y e. V ) ) )
32:31: |- { z | E. x E. y z = <. x ,. y >. } = { z | E. x E. y ( z = <. x , y >. /\ ( x e.V /\ y e. V ) ) }
320:25,32: |- { z | E. x E. y ( z = <. x ,. y >. /\ ( x e.V /\ y e. V ) ) } C_ { z | E. u E. v z = <. u , v >. }
33:: |- u e.V
34:: |- v e. V
35:33,34: |- ( u e.V /\ v e. V )
36:35: |- ( z = <. u ,. v >. <-> ( z = <. u ,. v >. /\ ( u e.V /\ v e. V ) ) )
37:36: |- ( E. v z = <. u ,. v >. <-> E. v ( z = <. u , v >. /\ ( u e.V /\ v e. V ) ) )
38:37: |- ( E. u E. v z = <. u ,. v >. <-> E. u E. v ( z = <. u , v >. /\ ( u e.V /\ v e. V ) ) )
39:38: |- { z | E. u E. v z = <. u ,. v >. } = { z | E. u E. v ( z = <. u , v >. /\ ( u e.V /\ v e. V ) ) }
40:320,39: |- { z | E. x E. y ( z = <. x ,. y >. /\ ( x e.V /\ y e. V ) ) } C_ { z | E. u E. v ( z = <. u , v >. /\ ( u e.V /\ v e. V ) ) }
41:: |- { <. x ,. y >. | ( x e.V /\ y e. V ) } = { z | E. x E. y ( z = <. x , y >. /\ ( x e.V /\ y e. V ) ) }
42:: |- { <. u ,. v >. | ( u e.V /\ v e. V ) } = { z | E. u E. v ( z = <. u , v >. /\ ( u e.V /\ v e. V ) ) }
43:40,41,42: |- { <. x ,. y >. | ( x e.V /\ y e. V ) } C_ { <. u , v >. | ( u e.V /\ v e. V ) }
44:: |- { <. u ,. v >. | ( u e.V /\ v e. V ) } = (V X. V )
45:43,44: |- { <. x ,. y >. | ( x e.V /\ y e. V ) } C_ (V X. V )
46:28: |- ( ph -> ( x e.V /\ y e. V ) )
47:46: |- { <. x ,. y >. | ph } C_ { <. x ,. y >. | ( x e.V /\ y e. V ) }
48:45,47: |- { <. x ,. y >. | ph } C_ (V X. V )
qed:48: |- Rel { <. x ,. y >. | ph }
(Contributed by Alan Sare, 9-Jul-2013) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion relopabVD Rel { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝜑 }

Proof

Step Hyp Ref Expression
1 vex 𝑥 ∈ V
2 vex 𝑦 ∈ V
3 1 2 pm3.2i ( 𝑥 ∈ V ∧ 𝑦 ∈ V )
4 3 a1i ( 𝜑 → ( 𝑥 ∈ V ∧ 𝑦 ∈ V ) )
5 4 ssopab2i { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝜑 } ⊆ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥 ∈ V ∧ 𝑦 ∈ V ) }
6 3 biantru ( 𝑧 = ⟨ 𝑥 , 𝑦 ⟩ ↔ ( 𝑧 = ⟨ 𝑥 , 𝑦 ⟩ ∧ ( 𝑥 ∈ V ∧ 𝑦 ∈ V ) ) )
7 6 exbii ( ∃ 𝑦 𝑧 = ⟨ 𝑥 , 𝑦 ⟩ ↔ ∃ 𝑦 ( 𝑧 = ⟨ 𝑥 , 𝑦 ⟩ ∧ ( 𝑥 ∈ V ∧ 𝑦 ∈ V ) ) )
8 7 exbii ( ∃ 𝑥𝑦 𝑧 = ⟨ 𝑥 , 𝑦 ⟩ ↔ ∃ 𝑥𝑦 ( 𝑧 = ⟨ 𝑥 , 𝑦 ⟩ ∧ ( 𝑥 ∈ V ∧ 𝑦 ∈ V ) ) )
9 8 abbii { 𝑧 ∣ ∃ 𝑥𝑦 𝑧 = ⟨ 𝑥 , 𝑦 ⟩ } = { 𝑧 ∣ ∃ 𝑥𝑦 ( 𝑧 = ⟨ 𝑥 , 𝑦 ⟩ ∧ ( 𝑥 ∈ V ∧ 𝑦 ∈ V ) ) }
10 ax6ev 𝑢 𝑢 = 𝑥
11 equcom ( 𝑢 = 𝑥𝑥 = 𝑢 )
12 11 exbii ( ∃ 𝑢 𝑢 = 𝑥 ↔ ∃ 𝑢 𝑥 = 𝑢 )
13 10 12 mpbi 𝑢 𝑥 = 𝑢
14 ax6ev 𝑣 𝑣 = 𝑦
15 equcom ( 𝑣 = 𝑦𝑦 = 𝑣 )
16 15 exbii ( ∃ 𝑣 𝑣 = 𝑦 ↔ ∃ 𝑣 𝑦 = 𝑣 )
17 14 16 mpbi 𝑣 𝑦 = 𝑣
18 idn1 (    𝑦 = 𝑣    ▶    𝑦 = 𝑣    )
19 opeq2 ( 𝑦 = 𝑣 → ⟨ 𝑥 , 𝑦 ⟩ = ⟨ 𝑥 , 𝑣 ⟩ )
20 18 19 e1a (    𝑦 = 𝑣    ▶   𝑥 , 𝑦 ⟩ = ⟨ 𝑥 , 𝑣   )
21 idn2 (    𝑦 = 𝑣    ,    𝑥 = 𝑢    ▶    𝑥 = 𝑢    )
22 opeq1 ( 𝑥 = 𝑢 → ⟨ 𝑥 , 𝑣 ⟩ = ⟨ 𝑢 , 𝑣 ⟩ )
23 21 22 e2 (    𝑦 = 𝑣    ,    𝑥 = 𝑢    ▶   𝑥 , 𝑣 ⟩ = ⟨ 𝑢 , 𝑣   )
24 eqeq1 ( ⟨ 𝑥 , 𝑦 ⟩ = ⟨ 𝑥 , 𝑣 ⟩ → ( ⟨ 𝑥 , 𝑦 ⟩ = ⟨ 𝑢 , 𝑣 ⟩ ↔ ⟨ 𝑥 , 𝑣 ⟩ = ⟨ 𝑢 , 𝑣 ⟩ ) )
25 24 biimprd ( ⟨ 𝑥 , 𝑦 ⟩ = ⟨ 𝑥 , 𝑣 ⟩ → ( ⟨ 𝑥 , 𝑣 ⟩ = ⟨ 𝑢 , 𝑣 ⟩ → ⟨ 𝑥 , 𝑦 ⟩ = ⟨ 𝑢 , 𝑣 ⟩ ) )
26 20 23 25 e12 (    𝑦 = 𝑣    ,    𝑥 = 𝑢    ▶   𝑥 , 𝑦 ⟩ = ⟨ 𝑢 , 𝑣   )
27 eqeq2 ( ⟨ 𝑥 , 𝑦 ⟩ = ⟨ 𝑢 , 𝑣 ⟩ → ( 𝑧 = ⟨ 𝑥 , 𝑦 ⟩ ↔ 𝑧 = ⟨ 𝑢 , 𝑣 ⟩ ) )
28 27 biimpd ( ⟨ 𝑥 , 𝑦 ⟩ = ⟨ 𝑢 , 𝑣 ⟩ → ( 𝑧 = ⟨ 𝑥 , 𝑦 ⟩ → 𝑧 = ⟨ 𝑢 , 𝑣 ⟩ ) )
29 26 28 e2 (    𝑦 = 𝑣    ,    𝑥 = 𝑢    ▶    ( 𝑧 = ⟨ 𝑥 , 𝑦 ⟩ → 𝑧 = ⟨ 𝑢 , 𝑣 ⟩ )    )
30 29 in2 (    𝑦 = 𝑣    ▶    ( 𝑥 = 𝑢 → ( 𝑧 = ⟨ 𝑥 , 𝑦 ⟩ → 𝑧 = ⟨ 𝑢 , 𝑣 ⟩ ) )    )
31 30 in1 ( 𝑦 = 𝑣 → ( 𝑥 = 𝑢 → ( 𝑧 = ⟨ 𝑥 , 𝑦 ⟩ → 𝑧 = ⟨ 𝑢 , 𝑣 ⟩ ) ) )
32 31 eximi ( ∃ 𝑣 𝑦 = 𝑣 → ∃ 𝑣 ( 𝑥 = 𝑢 → ( 𝑧 = ⟨ 𝑥 , 𝑦 ⟩ → 𝑧 = ⟨ 𝑢 , 𝑣 ⟩ ) ) )
33 17 32 ax-mp 𝑣 ( 𝑥 = 𝑢 → ( 𝑧 = ⟨ 𝑥 , 𝑦 ⟩ → 𝑧 = ⟨ 𝑢 , 𝑣 ⟩ ) )
34 33 19.37iv ( 𝑥 = 𝑢 → ∃ 𝑣 ( 𝑧 = ⟨ 𝑥 , 𝑦 ⟩ → 𝑧 = ⟨ 𝑢 , 𝑣 ⟩ ) )
35 19.37v ( ∃ 𝑣 ( 𝑧 = ⟨ 𝑥 , 𝑦 ⟩ → 𝑧 = ⟨ 𝑢 , 𝑣 ⟩ ) ↔ ( 𝑧 = ⟨ 𝑥 , 𝑦 ⟩ → ∃ 𝑣 𝑧 = ⟨ 𝑢 , 𝑣 ⟩ ) )
36 35 biimpi ( ∃ 𝑣 ( 𝑧 = ⟨ 𝑥 , 𝑦 ⟩ → 𝑧 = ⟨ 𝑢 , 𝑣 ⟩ ) → ( 𝑧 = ⟨ 𝑥 , 𝑦 ⟩ → ∃ 𝑣 𝑧 = ⟨ 𝑢 , 𝑣 ⟩ ) )
37 34 36 syl ( 𝑥 = 𝑢 → ( 𝑧 = ⟨ 𝑥 , 𝑦 ⟩ → ∃ 𝑣 𝑧 = ⟨ 𝑢 , 𝑣 ⟩ ) )
38 37 eximi ( ∃ 𝑢 𝑥 = 𝑢 → ∃ 𝑢 ( 𝑧 = ⟨ 𝑥 , 𝑦 ⟩ → ∃ 𝑣 𝑧 = ⟨ 𝑢 , 𝑣 ⟩ ) )
39 13 38 ax-mp 𝑢 ( 𝑧 = ⟨ 𝑥 , 𝑦 ⟩ → ∃ 𝑣 𝑧 = ⟨ 𝑢 , 𝑣 ⟩ )
40 39 19.37iv ( 𝑧 = ⟨ 𝑥 , 𝑦 ⟩ → ∃ 𝑢𝑣 𝑧 = ⟨ 𝑢 , 𝑣 ⟩ )
41 40 eximi ( ∃ 𝑦 𝑧 = ⟨ 𝑥 , 𝑦 ⟩ → ∃ 𝑦𝑢𝑣 𝑧 = ⟨ 𝑢 , 𝑣 ⟩ )
42 19.9v ( ∃ 𝑦𝑢𝑣 𝑧 = ⟨ 𝑢 , 𝑣 ⟩ ↔ ∃ 𝑢𝑣 𝑧 = ⟨ 𝑢 , 𝑣 ⟩ )
43 42 biimpi ( ∃ 𝑦𝑢𝑣 𝑧 = ⟨ 𝑢 , 𝑣 ⟩ → ∃ 𝑢𝑣 𝑧 = ⟨ 𝑢 , 𝑣 ⟩ )
44 41 43 syl ( ∃ 𝑦 𝑧 = ⟨ 𝑥 , 𝑦 ⟩ → ∃ 𝑢𝑣 𝑧 = ⟨ 𝑢 , 𝑣 ⟩ )
45 44 eximi ( ∃ 𝑥𝑦 𝑧 = ⟨ 𝑥 , 𝑦 ⟩ → ∃ 𝑥𝑢𝑣 𝑧 = ⟨ 𝑢 , 𝑣 ⟩ )
46 19.9v ( ∃ 𝑥𝑢𝑣 𝑧 = ⟨ 𝑢 , 𝑣 ⟩ ↔ ∃ 𝑢𝑣 𝑧 = ⟨ 𝑢 , 𝑣 ⟩ )
47 46 biimpi ( ∃ 𝑥𝑢𝑣 𝑧 = ⟨ 𝑢 , 𝑣 ⟩ → ∃ 𝑢𝑣 𝑧 = ⟨ 𝑢 , 𝑣 ⟩ )
48 45 47 syl ( ∃ 𝑥𝑦 𝑧 = ⟨ 𝑥 , 𝑦 ⟩ → ∃ 𝑢𝑣 𝑧 = ⟨ 𝑢 , 𝑣 ⟩ )
49 48 ss2abi { 𝑧 ∣ ∃ 𝑥𝑦 𝑧 = ⟨ 𝑥 , 𝑦 ⟩ } ⊆ { 𝑧 ∣ ∃ 𝑢𝑣 𝑧 = ⟨ 𝑢 , 𝑣 ⟩ }
50 9 49 eqsstrri { 𝑧 ∣ ∃ 𝑥𝑦 ( 𝑧 = ⟨ 𝑥 , 𝑦 ⟩ ∧ ( 𝑥 ∈ V ∧ 𝑦 ∈ V ) ) } ⊆ { 𝑧 ∣ ∃ 𝑢𝑣 𝑧 = ⟨ 𝑢 , 𝑣 ⟩ }
51 vex 𝑢 ∈ V
52 vex 𝑣 ∈ V
53 51 52 pm3.2i ( 𝑢 ∈ V ∧ 𝑣 ∈ V )
54 53 biantru ( 𝑧 = ⟨ 𝑢 , 𝑣 ⟩ ↔ ( 𝑧 = ⟨ 𝑢 , 𝑣 ⟩ ∧ ( 𝑢 ∈ V ∧ 𝑣 ∈ V ) ) )
55 54 exbii ( ∃ 𝑣 𝑧 = ⟨ 𝑢 , 𝑣 ⟩ ↔ ∃ 𝑣 ( 𝑧 = ⟨ 𝑢 , 𝑣 ⟩ ∧ ( 𝑢 ∈ V ∧ 𝑣 ∈ V ) ) )
56 55 exbii ( ∃ 𝑢𝑣 𝑧 = ⟨ 𝑢 , 𝑣 ⟩ ↔ ∃ 𝑢𝑣 ( 𝑧 = ⟨ 𝑢 , 𝑣 ⟩ ∧ ( 𝑢 ∈ V ∧ 𝑣 ∈ V ) ) )
57 56 abbii { 𝑧 ∣ ∃ 𝑢𝑣 𝑧 = ⟨ 𝑢 , 𝑣 ⟩ } = { 𝑧 ∣ ∃ 𝑢𝑣 ( 𝑧 = ⟨ 𝑢 , 𝑣 ⟩ ∧ ( 𝑢 ∈ V ∧ 𝑣 ∈ V ) ) }
58 50 57 sseqtri { 𝑧 ∣ ∃ 𝑥𝑦 ( 𝑧 = ⟨ 𝑥 , 𝑦 ⟩ ∧ ( 𝑥 ∈ V ∧ 𝑦 ∈ V ) ) } ⊆ { 𝑧 ∣ ∃ 𝑢𝑣 ( 𝑧 = ⟨ 𝑢 , 𝑣 ⟩ ∧ ( 𝑢 ∈ V ∧ 𝑣 ∈ V ) ) }
59 df-opab { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥 ∈ V ∧ 𝑦 ∈ V ) } = { 𝑧 ∣ ∃ 𝑥𝑦 ( 𝑧 = ⟨ 𝑥 , 𝑦 ⟩ ∧ ( 𝑥 ∈ V ∧ 𝑦 ∈ V ) ) }
60 df-opab { ⟨ 𝑢 , 𝑣 ⟩ ∣ ( 𝑢 ∈ V ∧ 𝑣 ∈ V ) } = { 𝑧 ∣ ∃ 𝑢𝑣 ( 𝑧 = ⟨ 𝑢 , 𝑣 ⟩ ∧ ( 𝑢 ∈ V ∧ 𝑣 ∈ V ) ) }
61 58 59 60 3sstr4i { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥 ∈ V ∧ 𝑦 ∈ V ) } ⊆ { ⟨ 𝑢 , 𝑣 ⟩ ∣ ( 𝑢 ∈ V ∧ 𝑣 ∈ V ) }
62 df-xp ( V × V ) = { ⟨ 𝑢 , 𝑣 ⟩ ∣ ( 𝑢 ∈ V ∧ 𝑣 ∈ V ) }
63 62 eqcomi { ⟨ 𝑢 , 𝑣 ⟩ ∣ ( 𝑢 ∈ V ∧ 𝑣 ∈ V ) } = ( V × V )
64 61 63 sseqtri { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥 ∈ V ∧ 𝑦 ∈ V ) } ⊆ ( V × V )
65 5 64 sstri { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝜑 } ⊆ ( V × V )
66 df-rel ( Rel { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝜑 } ↔ { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝜑 } ⊆ ( V × V ) )
67 66 biimpri ( { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝜑 } ⊆ ( V × V ) → Rel { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝜑 } )
68 65 67 e0a Rel { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝜑 }