Metamath Proof Explorer


Theorem relsset

Description: The subset class is a binary relation. (Contributed by Scott Fenton, 31-Mar-2012)

Ref Expression
Assertion relsset ⊒Rel⁑𝖲𝖲𝖾𝗍

Proof

Step Hyp Ref Expression
1 df-sset βŠ’π–²π–²π–Ύπ—=VΓ—Vβˆ–ran⁑EβŠ—Vβˆ–E
2 difss ⊒VΓ—Vβˆ–ran⁑EβŠ—Vβˆ–EβŠ†VΓ—V
3 1 2 eqsstri βŠ’π–²π–²π–Ύπ—βŠ†VΓ—V
4 df-rel ⊒Relβ‘π–²π–²π–Ύπ—β†”π–²π–²π–Ύπ—βŠ†VΓ—V
5 3 4 mpbir ⊒Rel⁑𝖲𝖲𝖾𝗍