Metamath Proof Explorer


Theorem relssinxpdmrn

Description: Subset of restriction, special case. (Contributed by Peter Mazsa, 10-Apr-2023)

Ref Expression
Assertion relssinxpdmrn RelRRSdomR×ranRRS

Proof

Step Hyp Ref Expression
1 relssdmrn RelRRdomR×ranR
2 1 biantrud RelRRSRSRdomR×ranR
3 ssin RSRdomR×ranRRSdomR×ranR
4 2 3 bitr2di RelRRSdomR×ranRRS