Metamath Proof Explorer


Theorem rencldnfi

Description: A set of real numbers which comes arbitrarily close to some target yet excludes it is infinite. The work is done in rencldnfilem using infima; this theorem removes the requirement that A be nonempty. (Contributed by Stefan O'Rear, 19-Oct-2014)

Ref Expression
Assertion rencldnfi A B ¬ B A x + y A y B < x ¬ A Fin

Proof

Step Hyp Ref Expression
1 simpl1 A B ¬ B A x + y A y B < x A
2 simpl2 A B ¬ B A x + y A y B < x B
3 rexn0 y A y B < x A
4 3 ralimi x + y A y B < x x + A
5 1rp 1 +
6 ne0i 1 + +
7 r19.3rzv + A x + A
8 5 6 7 mp2b A x + A
9 4 8 sylibr x + y A y B < x A
10 9 adantl A B ¬ B A x + y A y B < x A
11 simpl3 A B ¬ B A x + y A y B < x ¬ B A
12 10 11 jca A B ¬ B A x + y A y B < x A ¬ B A
13 simpr A B ¬ B A x + y A y B < x x + y A y B < x
14 rencldnfilem A B A ¬ B A x + y A y B < x ¬ A Fin
15 1 2 12 13 14 syl31anc A B ¬ B A x + y A y B < x ¬ A Fin