| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eqeq1 |
|
| 2 |
1
|
rexbidv |
|
| 3 |
2
|
elrab |
|
| 4 |
|
simp-4l |
|
| 5 |
|
simpr |
|
| 6 |
4 5
|
sseldd |
|
| 7 |
6
|
recnd |
|
| 8 |
|
simp-4r |
|
| 9 |
8
|
recnd |
|
| 10 |
7 9
|
subcld |
|
| 11 |
|
simprr |
|
| 12 |
11
|
ad2antrr |
|
| 13 |
|
nelneq |
|
| 14 |
5 12 13
|
syl2anc |
|
| 15 |
|
subeq0 |
|
| 16 |
15
|
necon3abid |
|
| 17 |
7 9 16
|
syl2anc |
|
| 18 |
14 17
|
mpbird |
|
| 19 |
10 18
|
absrpcld |
|
| 20 |
|
eleq1 |
|
| 21 |
19 20
|
syl5ibrcom |
|
| 22 |
21
|
rexlimdva |
|
| 23 |
22
|
expimpd |
|
| 24 |
3 23
|
biimtrid |
|
| 25 |
24
|
ssrdv |
|
| 26 |
25
|
adantr |
|
| 27 |
|
abrexfi |
|
| 28 |
|
rabssab |
|
| 29 |
|
ssfi |
|
| 30 |
27 28 29
|
sylancl |
|
| 31 |
30
|
adantl |
|
| 32 |
|
simplrl |
|
| 33 |
|
n0 |
|
| 34 |
32 33
|
sylib |
|
| 35 |
|
simp-4l |
|
| 36 |
|
simpr |
|
| 37 |
35 36
|
sseldd |
|
| 38 |
37
|
recnd |
|
| 39 |
|
simp-4r |
|
| 40 |
39
|
recnd |
|
| 41 |
38 40
|
subcld |
|
| 42 |
41
|
abscld |
|
| 43 |
|
eqid |
|
| 44 |
|
fvoveq1 |
|
| 45 |
44
|
rspceeqv |
|
| 46 |
43 45
|
mpan2 |
|
| 47 |
46
|
adantl |
|
| 48 |
|
eqeq1 |
|
| 49 |
48
|
rexbidv |
|
| 50 |
49
|
elrab |
|
| 51 |
42 47 50
|
sylanbrc |
|
| 52 |
51
|
ne0d |
|
| 53 |
34 52
|
exlimddv |
|
| 54 |
|
ssrab2 |
|
| 55 |
54
|
a1i |
|
| 56 |
|
gtso |
|
| 57 |
|
fisupcl |
|
| 58 |
56 57
|
mpan |
|
| 59 |
31 53 55 58
|
syl3anc |
|
| 60 |
26 59
|
sseldd |
|
| 61 |
54
|
a1i |
|
| 62 |
|
soss |
|
| 63 |
54 56 62
|
mp2 |
|
| 64 |
63
|
a1i |
|
| 65 |
|
fisupg |
|
| 66 |
64 31 53 65
|
syl3anc |
|
| 67 |
|
elrabi |
|
| 68 |
|
elrabi |
|
| 69 |
|
vex |
|
| 70 |
|
vex |
|
| 71 |
69 70
|
brcnv |
|
| 72 |
71
|
notbii |
|
| 73 |
|
lenlt |
|
| 74 |
73
|
biimprd |
|
| 75 |
72 74
|
biimtrid |
|
| 76 |
75
|
adantll |
|
| 77 |
68 76
|
sylan2 |
|
| 78 |
77
|
ralimdva |
|
| 79 |
78
|
adantrd |
|
| 80 |
67 79
|
sylan2 |
|
| 81 |
80
|
reximdva |
|
| 82 |
66 81
|
mpd |
|
| 83 |
82
|
adantr |
|
| 84 |
|
lbinfle |
|
| 85 |
61 83 51 84
|
syl3anc |
|
| 86 |
|
df-inf |
|
| 87 |
86
|
eqcomi |
|
| 88 |
87
|
breq1i |
|
| 89 |
85 88
|
sylibr |
|
| 90 |
54 59
|
sselid |
|
| 91 |
90
|
adantr |
|
| 92 |
91 42
|
lenltd |
|
| 93 |
89 92
|
mpbid |
|
| 94 |
93
|
ralrimiva |
|
| 95 |
|
breq2 |
|
| 96 |
95
|
notbid |
|
| 97 |
96
|
ralbidv |
|
| 98 |
97
|
rspcev |
|
| 99 |
60 94 98
|
syl2anc |
|
| 100 |
|
ralnex |
|
| 101 |
100
|
rexbii |
|
| 102 |
|
rexnal |
|
| 103 |
101 102
|
bitri |
|
| 104 |
99 103
|
sylib |
|
| 105 |
104
|
ex |
|
| 106 |
105
|
3impa |
|
| 107 |
106
|
con2d |
|
| 108 |
107
|
imp |
|