| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eqeq1 |  |-  ( a = c -> ( a = ( abs ` ( b - B ) ) <-> c = ( abs ` ( b - B ) ) ) ) | 
						
							| 2 | 1 | rexbidv |  |-  ( a = c -> ( E. b e. A a = ( abs ` ( b - B ) ) <-> E. b e. A c = ( abs ` ( b - B ) ) ) ) | 
						
							| 3 | 2 | elrab |  |-  ( c e. { a e. RR | E. b e. A a = ( abs ` ( b - B ) ) } <-> ( c e. RR /\ E. b e. A c = ( abs ` ( b - B ) ) ) ) | 
						
							| 4 |  | simp-4l |  |-  ( ( ( ( ( A C_ RR /\ B e. RR ) /\ ( A =/= (/) /\ -. B e. A ) ) /\ c e. RR ) /\ b e. A ) -> A C_ RR ) | 
						
							| 5 |  | simpr |  |-  ( ( ( ( ( A C_ RR /\ B e. RR ) /\ ( A =/= (/) /\ -. B e. A ) ) /\ c e. RR ) /\ b e. A ) -> b e. A ) | 
						
							| 6 | 4 5 | sseldd |  |-  ( ( ( ( ( A C_ RR /\ B e. RR ) /\ ( A =/= (/) /\ -. B e. A ) ) /\ c e. RR ) /\ b e. A ) -> b e. RR ) | 
						
							| 7 | 6 | recnd |  |-  ( ( ( ( ( A C_ RR /\ B e. RR ) /\ ( A =/= (/) /\ -. B e. A ) ) /\ c e. RR ) /\ b e. A ) -> b e. CC ) | 
						
							| 8 |  | simp-4r |  |-  ( ( ( ( ( A C_ RR /\ B e. RR ) /\ ( A =/= (/) /\ -. B e. A ) ) /\ c e. RR ) /\ b e. A ) -> B e. RR ) | 
						
							| 9 | 8 | recnd |  |-  ( ( ( ( ( A C_ RR /\ B e. RR ) /\ ( A =/= (/) /\ -. B e. A ) ) /\ c e. RR ) /\ b e. A ) -> B e. CC ) | 
						
							| 10 | 7 9 | subcld |  |-  ( ( ( ( ( A C_ RR /\ B e. RR ) /\ ( A =/= (/) /\ -. B e. A ) ) /\ c e. RR ) /\ b e. A ) -> ( b - B ) e. CC ) | 
						
							| 11 |  | simprr |  |-  ( ( ( A C_ RR /\ B e. RR ) /\ ( A =/= (/) /\ -. B e. A ) ) -> -. B e. A ) | 
						
							| 12 | 11 | ad2antrr |  |-  ( ( ( ( ( A C_ RR /\ B e. RR ) /\ ( A =/= (/) /\ -. B e. A ) ) /\ c e. RR ) /\ b e. A ) -> -. B e. A ) | 
						
							| 13 |  | nelneq |  |-  ( ( b e. A /\ -. B e. A ) -> -. b = B ) | 
						
							| 14 | 5 12 13 | syl2anc |  |-  ( ( ( ( ( A C_ RR /\ B e. RR ) /\ ( A =/= (/) /\ -. B e. A ) ) /\ c e. RR ) /\ b e. A ) -> -. b = B ) | 
						
							| 15 |  | subeq0 |  |-  ( ( b e. CC /\ B e. CC ) -> ( ( b - B ) = 0 <-> b = B ) ) | 
						
							| 16 | 15 | necon3abid |  |-  ( ( b e. CC /\ B e. CC ) -> ( ( b - B ) =/= 0 <-> -. b = B ) ) | 
						
							| 17 | 7 9 16 | syl2anc |  |-  ( ( ( ( ( A C_ RR /\ B e. RR ) /\ ( A =/= (/) /\ -. B e. A ) ) /\ c e. RR ) /\ b e. A ) -> ( ( b - B ) =/= 0 <-> -. b = B ) ) | 
						
							| 18 | 14 17 | mpbird |  |-  ( ( ( ( ( A C_ RR /\ B e. RR ) /\ ( A =/= (/) /\ -. B e. A ) ) /\ c e. RR ) /\ b e. A ) -> ( b - B ) =/= 0 ) | 
						
							| 19 | 10 18 | absrpcld |  |-  ( ( ( ( ( A C_ RR /\ B e. RR ) /\ ( A =/= (/) /\ -. B e. A ) ) /\ c e. RR ) /\ b e. A ) -> ( abs ` ( b - B ) ) e. RR+ ) | 
						
							| 20 |  | eleq1 |  |-  ( c = ( abs ` ( b - B ) ) -> ( c e. RR+ <-> ( abs ` ( b - B ) ) e. RR+ ) ) | 
						
							| 21 | 19 20 | syl5ibrcom |  |-  ( ( ( ( ( A C_ RR /\ B e. RR ) /\ ( A =/= (/) /\ -. B e. A ) ) /\ c e. RR ) /\ b e. A ) -> ( c = ( abs ` ( b - B ) ) -> c e. RR+ ) ) | 
						
							| 22 | 21 | rexlimdva |  |-  ( ( ( ( A C_ RR /\ B e. RR ) /\ ( A =/= (/) /\ -. B e. A ) ) /\ c e. RR ) -> ( E. b e. A c = ( abs ` ( b - B ) ) -> c e. RR+ ) ) | 
						
							| 23 | 22 | expimpd |  |-  ( ( ( A C_ RR /\ B e. RR ) /\ ( A =/= (/) /\ -. B e. A ) ) -> ( ( c e. RR /\ E. b e. A c = ( abs ` ( b - B ) ) ) -> c e. RR+ ) ) | 
						
							| 24 | 3 23 | biimtrid |  |-  ( ( ( A C_ RR /\ B e. RR ) /\ ( A =/= (/) /\ -. B e. A ) ) -> ( c e. { a e. RR | E. b e. A a = ( abs ` ( b - B ) ) } -> c e. RR+ ) ) | 
						
							| 25 | 24 | ssrdv |  |-  ( ( ( A C_ RR /\ B e. RR ) /\ ( A =/= (/) /\ -. B e. A ) ) -> { a e. RR | E. b e. A a = ( abs ` ( b - B ) ) } C_ RR+ ) | 
						
							| 26 | 25 | adantr |  |-  ( ( ( ( A C_ RR /\ B e. RR ) /\ ( A =/= (/) /\ -. B e. A ) ) /\ A e. Fin ) -> { a e. RR | E. b e. A a = ( abs ` ( b - B ) ) } C_ RR+ ) | 
						
							| 27 |  | abrexfi |  |-  ( A e. Fin -> { a | E. b e. A a = ( abs ` ( b - B ) ) } e. Fin ) | 
						
							| 28 |  | rabssab |  |-  { a e. RR | E. b e. A a = ( abs ` ( b - B ) ) } C_ { a | E. b e. A a = ( abs ` ( b - B ) ) } | 
						
							| 29 |  | ssfi |  |-  ( ( { a | E. b e. A a = ( abs ` ( b - B ) ) } e. Fin /\ { a e. RR | E. b e. A a = ( abs ` ( b - B ) ) } C_ { a | E. b e. A a = ( abs ` ( b - B ) ) } ) -> { a e. RR | E. b e. A a = ( abs ` ( b - B ) ) } e. Fin ) | 
						
							| 30 | 27 28 29 | sylancl |  |-  ( A e. Fin -> { a e. RR | E. b e. A a = ( abs ` ( b - B ) ) } e. Fin ) | 
						
							| 31 | 30 | adantl |  |-  ( ( ( ( A C_ RR /\ B e. RR ) /\ ( A =/= (/) /\ -. B e. A ) ) /\ A e. Fin ) -> { a e. RR | E. b e. A a = ( abs ` ( b - B ) ) } e. Fin ) | 
						
							| 32 |  | simplrl |  |-  ( ( ( ( A C_ RR /\ B e. RR ) /\ ( A =/= (/) /\ -. B e. A ) ) /\ A e. Fin ) -> A =/= (/) ) | 
						
							| 33 |  | n0 |  |-  ( A =/= (/) <-> E. y y e. A ) | 
						
							| 34 | 32 33 | sylib |  |-  ( ( ( ( A C_ RR /\ B e. RR ) /\ ( A =/= (/) /\ -. B e. A ) ) /\ A e. Fin ) -> E. y y e. A ) | 
						
							| 35 |  | simp-4l |  |-  ( ( ( ( ( A C_ RR /\ B e. RR ) /\ ( A =/= (/) /\ -. B e. A ) ) /\ A e. Fin ) /\ y e. A ) -> A C_ RR ) | 
						
							| 36 |  | simpr |  |-  ( ( ( ( ( A C_ RR /\ B e. RR ) /\ ( A =/= (/) /\ -. B e. A ) ) /\ A e. Fin ) /\ y e. A ) -> y e. A ) | 
						
							| 37 | 35 36 | sseldd |  |-  ( ( ( ( ( A C_ RR /\ B e. RR ) /\ ( A =/= (/) /\ -. B e. A ) ) /\ A e. Fin ) /\ y e. A ) -> y e. RR ) | 
						
							| 38 | 37 | recnd |  |-  ( ( ( ( ( A C_ RR /\ B e. RR ) /\ ( A =/= (/) /\ -. B e. A ) ) /\ A e. Fin ) /\ y e. A ) -> y e. CC ) | 
						
							| 39 |  | simp-4r |  |-  ( ( ( ( ( A C_ RR /\ B e. RR ) /\ ( A =/= (/) /\ -. B e. A ) ) /\ A e. Fin ) /\ y e. A ) -> B e. RR ) | 
						
							| 40 | 39 | recnd |  |-  ( ( ( ( ( A C_ RR /\ B e. RR ) /\ ( A =/= (/) /\ -. B e. A ) ) /\ A e. Fin ) /\ y e. A ) -> B e. CC ) | 
						
							| 41 | 38 40 | subcld |  |-  ( ( ( ( ( A C_ RR /\ B e. RR ) /\ ( A =/= (/) /\ -. B e. A ) ) /\ A e. Fin ) /\ y e. A ) -> ( y - B ) e. CC ) | 
						
							| 42 | 41 | abscld |  |-  ( ( ( ( ( A C_ RR /\ B e. RR ) /\ ( A =/= (/) /\ -. B e. A ) ) /\ A e. Fin ) /\ y e. A ) -> ( abs ` ( y - B ) ) e. RR ) | 
						
							| 43 |  | eqid |  |-  ( abs ` ( y - B ) ) = ( abs ` ( y - B ) ) | 
						
							| 44 |  | fvoveq1 |  |-  ( b = y -> ( abs ` ( b - B ) ) = ( abs ` ( y - B ) ) ) | 
						
							| 45 | 44 | rspceeqv |  |-  ( ( y e. A /\ ( abs ` ( y - B ) ) = ( abs ` ( y - B ) ) ) -> E. b e. A ( abs ` ( y - B ) ) = ( abs ` ( b - B ) ) ) | 
						
							| 46 | 43 45 | mpan2 |  |-  ( y e. A -> E. b e. A ( abs ` ( y - B ) ) = ( abs ` ( b - B ) ) ) | 
						
							| 47 | 46 | adantl |  |-  ( ( ( ( ( A C_ RR /\ B e. RR ) /\ ( A =/= (/) /\ -. B e. A ) ) /\ A e. Fin ) /\ y e. A ) -> E. b e. A ( abs ` ( y - B ) ) = ( abs ` ( b - B ) ) ) | 
						
							| 48 |  | eqeq1 |  |-  ( a = ( abs ` ( y - B ) ) -> ( a = ( abs ` ( b - B ) ) <-> ( abs ` ( y - B ) ) = ( abs ` ( b - B ) ) ) ) | 
						
							| 49 | 48 | rexbidv |  |-  ( a = ( abs ` ( y - B ) ) -> ( E. b e. A a = ( abs ` ( b - B ) ) <-> E. b e. A ( abs ` ( y - B ) ) = ( abs ` ( b - B ) ) ) ) | 
						
							| 50 | 49 | elrab |  |-  ( ( abs ` ( y - B ) ) e. { a e. RR | E. b e. A a = ( abs ` ( b - B ) ) } <-> ( ( abs ` ( y - B ) ) e. RR /\ E. b e. A ( abs ` ( y - B ) ) = ( abs ` ( b - B ) ) ) ) | 
						
							| 51 | 42 47 50 | sylanbrc |  |-  ( ( ( ( ( A C_ RR /\ B e. RR ) /\ ( A =/= (/) /\ -. B e. A ) ) /\ A e. Fin ) /\ y e. A ) -> ( abs ` ( y - B ) ) e. { a e. RR | E. b e. A a = ( abs ` ( b - B ) ) } ) | 
						
							| 52 | 51 | ne0d |  |-  ( ( ( ( ( A C_ RR /\ B e. RR ) /\ ( A =/= (/) /\ -. B e. A ) ) /\ A e. Fin ) /\ y e. A ) -> { a e. RR | E. b e. A a = ( abs ` ( b - B ) ) } =/= (/) ) | 
						
							| 53 | 34 52 | exlimddv |  |-  ( ( ( ( A C_ RR /\ B e. RR ) /\ ( A =/= (/) /\ -. B e. A ) ) /\ A e. Fin ) -> { a e. RR | E. b e. A a = ( abs ` ( b - B ) ) } =/= (/) ) | 
						
							| 54 |  | ssrab2 |  |-  { a e. RR | E. b e. A a = ( abs ` ( b - B ) ) } C_ RR | 
						
							| 55 | 54 | a1i |  |-  ( ( ( ( A C_ RR /\ B e. RR ) /\ ( A =/= (/) /\ -. B e. A ) ) /\ A e. Fin ) -> { a e. RR | E. b e. A a = ( abs ` ( b - B ) ) } C_ RR ) | 
						
							| 56 |  | gtso |  |-  `' < Or RR | 
						
							| 57 |  | fisupcl |  |-  ( ( `' < Or RR /\ ( { a e. RR | E. b e. A a = ( abs ` ( b - B ) ) } e. Fin /\ { a e. RR | E. b e. A a = ( abs ` ( b - B ) ) } =/= (/) /\ { a e. RR | E. b e. A a = ( abs ` ( b - B ) ) } C_ RR ) ) -> sup ( { a e. RR | E. b e. A a = ( abs ` ( b - B ) ) } , RR , `' < ) e. { a e. RR | E. b e. A a = ( abs ` ( b - B ) ) } ) | 
						
							| 58 | 56 57 | mpan |  |-  ( ( { a e. RR | E. b e. A a = ( abs ` ( b - B ) ) } e. Fin /\ { a e. RR | E. b e. A a = ( abs ` ( b - B ) ) } =/= (/) /\ { a e. RR | E. b e. A a = ( abs ` ( b - B ) ) } C_ RR ) -> sup ( { a e. RR | E. b e. A a = ( abs ` ( b - B ) ) } , RR , `' < ) e. { a e. RR | E. b e. A a = ( abs ` ( b - B ) ) } ) | 
						
							| 59 | 31 53 55 58 | syl3anc |  |-  ( ( ( ( A C_ RR /\ B e. RR ) /\ ( A =/= (/) /\ -. B e. A ) ) /\ A e. Fin ) -> sup ( { a e. RR | E. b e. A a = ( abs ` ( b - B ) ) } , RR , `' < ) e. { a e. RR | E. b e. A a = ( abs ` ( b - B ) ) } ) | 
						
							| 60 | 26 59 | sseldd |  |-  ( ( ( ( A C_ RR /\ B e. RR ) /\ ( A =/= (/) /\ -. B e. A ) ) /\ A e. Fin ) -> sup ( { a e. RR | E. b e. A a = ( abs ` ( b - B ) ) } , RR , `' < ) e. RR+ ) | 
						
							| 61 | 54 | a1i |  |-  ( ( ( ( ( A C_ RR /\ B e. RR ) /\ ( A =/= (/) /\ -. B e. A ) ) /\ A e. Fin ) /\ y e. A ) -> { a e. RR | E. b e. A a = ( abs ` ( b - B ) ) } C_ RR ) | 
						
							| 62 |  | soss |  |-  ( { a e. RR | E. b e. A a = ( abs ` ( b - B ) ) } C_ RR -> ( `' < Or RR -> `' < Or { a e. RR | E. b e. A a = ( abs ` ( b - B ) ) } ) ) | 
						
							| 63 | 54 56 62 | mp2 |  |-  `' < Or { a e. RR | E. b e. A a = ( abs ` ( b - B ) ) } | 
						
							| 64 | 63 | a1i |  |-  ( ( ( ( A C_ RR /\ B e. RR ) /\ ( A =/= (/) /\ -. B e. A ) ) /\ A e. Fin ) -> `' < Or { a e. RR | E. b e. A a = ( abs ` ( b - B ) ) } ) | 
						
							| 65 |  | fisupg |  |-  ( ( `' < Or { a e. RR | E. b e. A a = ( abs ` ( b - B ) ) } /\ { a e. RR | E. b e. A a = ( abs ` ( b - B ) ) } e. Fin /\ { a e. RR | E. b e. A a = ( abs ` ( b - B ) ) } =/= (/) ) -> E. c e. { a e. RR | E. b e. A a = ( abs ` ( b - B ) ) } ( A. d e. { a e. RR | E. b e. A a = ( abs ` ( b - B ) ) } -. c `' < d /\ A. d e. { a e. RR | E. b e. A a = ( abs ` ( b - B ) ) } ( d `' < c -> E. x e. { a e. RR | E. b e. A a = ( abs ` ( b - B ) ) } d `' < x ) ) ) | 
						
							| 66 | 64 31 53 65 | syl3anc |  |-  ( ( ( ( A C_ RR /\ B e. RR ) /\ ( A =/= (/) /\ -. B e. A ) ) /\ A e. Fin ) -> E. c e. { a e. RR | E. b e. A a = ( abs ` ( b - B ) ) } ( A. d e. { a e. RR | E. b e. A a = ( abs ` ( b - B ) ) } -. c `' < d /\ A. d e. { a e. RR | E. b e. A a = ( abs ` ( b - B ) ) } ( d `' < c -> E. x e. { a e. RR | E. b e. A a = ( abs ` ( b - B ) ) } d `' < x ) ) ) | 
						
							| 67 |  | elrabi |  |-  ( c e. { a e. RR | E. b e. A a = ( abs ` ( b - B ) ) } -> c e. RR ) | 
						
							| 68 |  | elrabi |  |-  ( d e. { a e. RR | E. b e. A a = ( abs ` ( b - B ) ) } -> d e. RR ) | 
						
							| 69 |  | vex |  |-  c e. _V | 
						
							| 70 |  | vex |  |-  d e. _V | 
						
							| 71 | 69 70 | brcnv |  |-  ( c `' < d <-> d < c ) | 
						
							| 72 | 71 | notbii |  |-  ( -. c `' < d <-> -. d < c ) | 
						
							| 73 |  | lenlt |  |-  ( ( c e. RR /\ d e. RR ) -> ( c <_ d <-> -. d < c ) ) | 
						
							| 74 | 73 | biimprd |  |-  ( ( c e. RR /\ d e. RR ) -> ( -. d < c -> c <_ d ) ) | 
						
							| 75 | 72 74 | biimtrid |  |-  ( ( c e. RR /\ d e. RR ) -> ( -. c `' < d -> c <_ d ) ) | 
						
							| 76 | 75 | adantll |  |-  ( ( ( ( ( ( A C_ RR /\ B e. RR ) /\ ( A =/= (/) /\ -. B e. A ) ) /\ A e. Fin ) /\ c e. RR ) /\ d e. RR ) -> ( -. c `' < d -> c <_ d ) ) | 
						
							| 77 | 68 76 | sylan2 |  |-  ( ( ( ( ( ( A C_ RR /\ B e. RR ) /\ ( A =/= (/) /\ -. B e. A ) ) /\ A e. Fin ) /\ c e. RR ) /\ d e. { a e. RR | E. b e. A a = ( abs ` ( b - B ) ) } ) -> ( -. c `' < d -> c <_ d ) ) | 
						
							| 78 | 77 | ralimdva |  |-  ( ( ( ( ( A C_ RR /\ B e. RR ) /\ ( A =/= (/) /\ -. B e. A ) ) /\ A e. Fin ) /\ c e. RR ) -> ( A. d e. { a e. RR | E. b e. A a = ( abs ` ( b - B ) ) } -. c `' < d -> A. d e. { a e. RR | E. b e. A a = ( abs ` ( b - B ) ) } c <_ d ) ) | 
						
							| 79 | 78 | adantrd |  |-  ( ( ( ( ( A C_ RR /\ B e. RR ) /\ ( A =/= (/) /\ -. B e. A ) ) /\ A e. Fin ) /\ c e. RR ) -> ( ( A. d e. { a e. RR | E. b e. A a = ( abs ` ( b - B ) ) } -. c `' < d /\ A. d e. { a e. RR | E. b e. A a = ( abs ` ( b - B ) ) } ( d `' < c -> E. x e. { a e. RR | E. b e. A a = ( abs ` ( b - B ) ) } d `' < x ) ) -> A. d e. { a e. RR | E. b e. A a = ( abs ` ( b - B ) ) } c <_ d ) ) | 
						
							| 80 | 67 79 | sylan2 |  |-  ( ( ( ( ( A C_ RR /\ B e. RR ) /\ ( A =/= (/) /\ -. B e. A ) ) /\ A e. Fin ) /\ c e. { a e. RR | E. b e. A a = ( abs ` ( b - B ) ) } ) -> ( ( A. d e. { a e. RR | E. b e. A a = ( abs ` ( b - B ) ) } -. c `' < d /\ A. d e. { a e. RR | E. b e. A a = ( abs ` ( b - B ) ) } ( d `' < c -> E. x e. { a e. RR | E. b e. A a = ( abs ` ( b - B ) ) } d `' < x ) ) -> A. d e. { a e. RR | E. b e. A a = ( abs ` ( b - B ) ) } c <_ d ) ) | 
						
							| 81 | 80 | reximdva |  |-  ( ( ( ( A C_ RR /\ B e. RR ) /\ ( A =/= (/) /\ -. B e. A ) ) /\ A e. Fin ) -> ( E. c e. { a e. RR | E. b e. A a = ( abs ` ( b - B ) ) } ( A. d e. { a e. RR | E. b e. A a = ( abs ` ( b - B ) ) } -. c `' < d /\ A. d e. { a e. RR | E. b e. A a = ( abs ` ( b - B ) ) } ( d `' < c -> E. x e. { a e. RR | E. b e. A a = ( abs ` ( b - B ) ) } d `' < x ) ) -> E. c e. { a e. RR | E. b e. A a = ( abs ` ( b - B ) ) } A. d e. { a e. RR | E. b e. A a = ( abs ` ( b - B ) ) } c <_ d ) ) | 
						
							| 82 | 66 81 | mpd |  |-  ( ( ( ( A C_ RR /\ B e. RR ) /\ ( A =/= (/) /\ -. B e. A ) ) /\ A e. Fin ) -> E. c e. { a e. RR | E. b e. A a = ( abs ` ( b - B ) ) } A. d e. { a e. RR | E. b e. A a = ( abs ` ( b - B ) ) } c <_ d ) | 
						
							| 83 | 82 | adantr |  |-  ( ( ( ( ( A C_ RR /\ B e. RR ) /\ ( A =/= (/) /\ -. B e. A ) ) /\ A e. Fin ) /\ y e. A ) -> E. c e. { a e. RR | E. b e. A a = ( abs ` ( b - B ) ) } A. d e. { a e. RR | E. b e. A a = ( abs ` ( b - B ) ) } c <_ d ) | 
						
							| 84 |  | lbinfle |  |-  ( ( { a e. RR | E. b e. A a = ( abs ` ( b - B ) ) } C_ RR /\ E. c e. { a e. RR | E. b e. A a = ( abs ` ( b - B ) ) } A. d e. { a e. RR | E. b e. A a = ( abs ` ( b - B ) ) } c <_ d /\ ( abs ` ( y - B ) ) e. { a e. RR | E. b e. A a = ( abs ` ( b - B ) ) } ) -> inf ( { a e. RR | E. b e. A a = ( abs ` ( b - B ) ) } , RR , < ) <_ ( abs ` ( y - B ) ) ) | 
						
							| 85 | 61 83 51 84 | syl3anc |  |-  ( ( ( ( ( A C_ RR /\ B e. RR ) /\ ( A =/= (/) /\ -. B e. A ) ) /\ A e. Fin ) /\ y e. A ) -> inf ( { a e. RR | E. b e. A a = ( abs ` ( b - B ) ) } , RR , < ) <_ ( abs ` ( y - B ) ) ) | 
						
							| 86 |  | df-inf |  |-  inf ( { a e. RR | E. b e. A a = ( abs ` ( b - B ) ) } , RR , < ) = sup ( { a e. RR | E. b e. A a = ( abs ` ( b - B ) ) } , RR , `' < ) | 
						
							| 87 | 86 | eqcomi |  |-  sup ( { a e. RR | E. b e. A a = ( abs ` ( b - B ) ) } , RR , `' < ) = inf ( { a e. RR | E. b e. A a = ( abs ` ( b - B ) ) } , RR , < ) | 
						
							| 88 | 87 | breq1i |  |-  ( sup ( { a e. RR | E. b e. A a = ( abs ` ( b - B ) ) } , RR , `' < ) <_ ( abs ` ( y - B ) ) <-> inf ( { a e. RR | E. b e. A a = ( abs ` ( b - B ) ) } , RR , < ) <_ ( abs ` ( y - B ) ) ) | 
						
							| 89 | 85 88 | sylibr |  |-  ( ( ( ( ( A C_ RR /\ B e. RR ) /\ ( A =/= (/) /\ -. B e. A ) ) /\ A e. Fin ) /\ y e. A ) -> sup ( { a e. RR | E. b e. A a = ( abs ` ( b - B ) ) } , RR , `' < ) <_ ( abs ` ( y - B ) ) ) | 
						
							| 90 | 54 59 | sselid |  |-  ( ( ( ( A C_ RR /\ B e. RR ) /\ ( A =/= (/) /\ -. B e. A ) ) /\ A e. Fin ) -> sup ( { a e. RR | E. b e. A a = ( abs ` ( b - B ) ) } , RR , `' < ) e. RR ) | 
						
							| 91 | 90 | adantr |  |-  ( ( ( ( ( A C_ RR /\ B e. RR ) /\ ( A =/= (/) /\ -. B e. A ) ) /\ A e. Fin ) /\ y e. A ) -> sup ( { a e. RR | E. b e. A a = ( abs ` ( b - B ) ) } , RR , `' < ) e. RR ) | 
						
							| 92 | 91 42 | lenltd |  |-  ( ( ( ( ( A C_ RR /\ B e. RR ) /\ ( A =/= (/) /\ -. B e. A ) ) /\ A e. Fin ) /\ y e. A ) -> ( sup ( { a e. RR | E. b e. A a = ( abs ` ( b - B ) ) } , RR , `' < ) <_ ( abs ` ( y - B ) ) <-> -. ( abs ` ( y - B ) ) < sup ( { a e. RR | E. b e. A a = ( abs ` ( b - B ) ) } , RR , `' < ) ) ) | 
						
							| 93 | 89 92 | mpbid |  |-  ( ( ( ( ( A C_ RR /\ B e. RR ) /\ ( A =/= (/) /\ -. B e. A ) ) /\ A e. Fin ) /\ y e. A ) -> -. ( abs ` ( y - B ) ) < sup ( { a e. RR | E. b e. A a = ( abs ` ( b - B ) ) } , RR , `' < ) ) | 
						
							| 94 | 93 | ralrimiva |  |-  ( ( ( ( A C_ RR /\ B e. RR ) /\ ( A =/= (/) /\ -. B e. A ) ) /\ A e. Fin ) -> A. y e. A -. ( abs ` ( y - B ) ) < sup ( { a e. RR | E. b e. A a = ( abs ` ( b - B ) ) } , RR , `' < ) ) | 
						
							| 95 |  | breq2 |  |-  ( x = sup ( { a e. RR | E. b e. A a = ( abs ` ( b - B ) ) } , RR , `' < ) -> ( ( abs ` ( y - B ) ) < x <-> ( abs ` ( y - B ) ) < sup ( { a e. RR | E. b e. A a = ( abs ` ( b - B ) ) } , RR , `' < ) ) ) | 
						
							| 96 | 95 | notbid |  |-  ( x = sup ( { a e. RR | E. b e. A a = ( abs ` ( b - B ) ) } , RR , `' < ) -> ( -. ( abs ` ( y - B ) ) < x <-> -. ( abs ` ( y - B ) ) < sup ( { a e. RR | E. b e. A a = ( abs ` ( b - B ) ) } , RR , `' < ) ) ) | 
						
							| 97 | 96 | ralbidv |  |-  ( x = sup ( { a e. RR | E. b e. A a = ( abs ` ( b - B ) ) } , RR , `' < ) -> ( A. y e. A -. ( abs ` ( y - B ) ) < x <-> A. y e. A -. ( abs ` ( y - B ) ) < sup ( { a e. RR | E. b e. A a = ( abs ` ( b - B ) ) } , RR , `' < ) ) ) | 
						
							| 98 | 97 | rspcev |  |-  ( ( sup ( { a e. RR | E. b e. A a = ( abs ` ( b - B ) ) } , RR , `' < ) e. RR+ /\ A. y e. A -. ( abs ` ( y - B ) ) < sup ( { a e. RR | E. b e. A a = ( abs ` ( b - B ) ) } , RR , `' < ) ) -> E. x e. RR+ A. y e. A -. ( abs ` ( y - B ) ) < x ) | 
						
							| 99 | 60 94 98 | syl2anc |  |-  ( ( ( ( A C_ RR /\ B e. RR ) /\ ( A =/= (/) /\ -. B e. A ) ) /\ A e. Fin ) -> E. x e. RR+ A. y e. A -. ( abs ` ( y - B ) ) < x ) | 
						
							| 100 |  | ralnex |  |-  ( A. y e. A -. ( abs ` ( y - B ) ) < x <-> -. E. y e. A ( abs ` ( y - B ) ) < x ) | 
						
							| 101 | 100 | rexbii |  |-  ( E. x e. RR+ A. y e. A -. ( abs ` ( y - B ) ) < x <-> E. x e. RR+ -. E. y e. A ( abs ` ( y - B ) ) < x ) | 
						
							| 102 |  | rexnal |  |-  ( E. x e. RR+ -. E. y e. A ( abs ` ( y - B ) ) < x <-> -. A. x e. RR+ E. y e. A ( abs ` ( y - B ) ) < x ) | 
						
							| 103 | 101 102 | bitri |  |-  ( E. x e. RR+ A. y e. A -. ( abs ` ( y - B ) ) < x <-> -. A. x e. RR+ E. y e. A ( abs ` ( y - B ) ) < x ) | 
						
							| 104 | 99 103 | sylib |  |-  ( ( ( ( A C_ RR /\ B e. RR ) /\ ( A =/= (/) /\ -. B e. A ) ) /\ A e. Fin ) -> -. A. x e. RR+ E. y e. A ( abs ` ( y - B ) ) < x ) | 
						
							| 105 | 104 | ex |  |-  ( ( ( A C_ RR /\ B e. RR ) /\ ( A =/= (/) /\ -. B e. A ) ) -> ( A e. Fin -> -. A. x e. RR+ E. y e. A ( abs ` ( y - B ) ) < x ) ) | 
						
							| 106 | 105 | 3impa |  |-  ( ( A C_ RR /\ B e. RR /\ ( A =/= (/) /\ -. B e. A ) ) -> ( A e. Fin -> -. A. x e. RR+ E. y e. A ( abs ` ( y - B ) ) < x ) ) | 
						
							| 107 | 106 | con2d |  |-  ( ( A C_ RR /\ B e. RR /\ ( A =/= (/) /\ -. B e. A ) ) -> ( A. x e. RR+ E. y e. A ( abs ` ( y - B ) ) < x -> -. A e. Fin ) ) | 
						
							| 108 | 107 | imp |  |-  ( ( ( A C_ RR /\ B e. RR /\ ( A =/= (/) /\ -. B e. A ) ) /\ A. x e. RR+ E. y e. A ( abs ` ( y - B ) ) < x ) -> -. A e. Fin ) |