Metamath Proof Explorer


Theorem reneg

Description: Real part of negative. (Contributed by NM, 17-Mar-2005) (Revised by Mario Carneiro, 14-Jul-2014)

Ref Expression
Assertion reneg AA=A

Proof

Step Hyp Ref Expression
1 recl AA
2 1 recnd AA
3 ax-icn i
4 imcl AA
5 4 recnd AA
6 mulcl iAiA
7 3 5 6 sylancr AiA
8 2 7 negdid AA+iA=-A+iA
9 replim AA=A+iA
10 9 negeqd AA=A+iA
11 mulneg2 iAiA=iA
12 3 5 11 sylancr AiA=iA
13 12 oveq2d A-A+iA=-A+iA
14 8 10 13 3eqtr4d AA=-A+iA
15 14 fveq2d AA=-A+iA
16 1 renegcld AA
17 4 renegcld AA
18 crre AA-A+iA=A
19 16 17 18 syl2anc A-A+iA=A
20 15 19 eqtrd AA=A