Metamath Proof Explorer


Theorem reps

Description: Construct a function mapping a half-open range of nonnegative integers to a constant. (Contributed by AV, 4-Nov-2018)

Ref Expression
Assertion reps SVN0SrepeatSN=x0..^NS

Proof

Step Hyp Ref Expression
1 elex SVSV
2 1 adantr SVN0SV
3 simpr SVN0N0
4 ovex 0..^NV
5 mptexg 0..^NVx0..^NSV
6 4 5 mp1i SVN0x0..^NSV
7 oveq2 n=N0..^n=0..^N
8 7 adantl s=Sn=N0..^n=0..^N
9 simpll s=Sn=Nx0..^ns=S
10 8 9 mpteq12dva s=Sn=Nx0..^ns=x0..^NS
11 df-reps repeatS=sV,n0x0..^ns
12 10 11 ovmpoga SVN0x0..^NSVSrepeatSN=x0..^NS
13 2 3 6 12 syl3anc SVN0SrepeatSN=x0..^NS