Metamath Proof Explorer


Theorem rersubcl

Description: Closure for real subtraction. Based on subcl . (Contributed by Steven Nguyen, 7-Jan-2023)

Ref Expression
Assertion rersubcl ABA-B

Proof

Step Hyp Ref Expression
1 resubval ABA-B=ιx|B+x=A
2 resubeu BA∃!xB+x=A
3 2 ancoms AB∃!xB+x=A
4 riotacl ∃!xB+x=Aιx|B+x=A
5 3 4 syl ABιx|B+x=A
6 1 5 eqeltrd ABA-B