Description: If the restriction of a function by a set which, subtracted from the domain of the function so that its difference is finitely supported, the function itself is finitely supported. (Contributed by AV, 27-May-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | resfsupp.b | |
|
resfsupp.e | |
||
resfsupp.f | |
||
resfsupp.g | |
||
resfsupp.s | |
||
resfsupp.z | |
||
Assertion | resfsupp | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resfsupp.b | |
|
2 | resfsupp.e | |
|
3 | resfsupp.f | |
|
4 | resfsupp.g | |
|
5 | resfsupp.s | |
|
6 | resfsupp.z | |
|
7 | 5 | fsuppimpd | |
8 | 1 2 4 7 6 | ressuppfi | |
9 | funisfsupp | |
|
10 | 3 2 6 9 | syl3anc | |
11 | 8 10 | mpbird | |