Metamath Proof Explorer


Theorem resfsupp

Description: If the restriction of a function by a set which, subtracted from the domain of the function so that its difference is finitely supported, the function itself is finitely supported. (Contributed by AV, 27-May-2019)

Ref Expression
Hypotheses resfsupp.b φdomFBFin
resfsupp.e φFW
resfsupp.f φFunF
resfsupp.g φG=FB
resfsupp.s φfinSuppZG
resfsupp.z φZV
Assertion resfsupp φfinSuppZF

Proof

Step Hyp Ref Expression
1 resfsupp.b φdomFBFin
2 resfsupp.e φFW
3 resfsupp.f φFunF
4 resfsupp.g φG=FB
5 resfsupp.s φfinSuppZG
6 resfsupp.z φZV
7 5 fsuppimpd φGsuppZFin
8 1 2 4 7 6 ressuppfi φFsuppZFin
9 funisfsupp FunFFWZVfinSuppZFFsuppZFin
10 3 2 6 9 syl3anc φfinSuppZFFsuppZFin
11 8 10 mpbird φfinSuppZF